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Abstract

Background: Evidence is accumulating to characterise the key differences between systemic sclerosis (SSc) and
rheumatoid arthritis (RA), which are similar but distinct systemic autoimmune diseases. However, the differences at
the genetic level are not yet clear. Therefore, the aim of the present study was to identify key differential genes
between patients with SSc and RA.

Methods: The Gene Expression Omnibus database was used to identify differentially expressed genes (DEGs)
between SSc and RA biopsies. The DEGs were then functionally annotated using Gene Ontology (GO) terms and
the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways with the Database for Annotation, Visualization
and Integrated Discovery (DAVID) tools. A protein–protein interaction (PPI) network was constructed with Cytoscape
software. The Molecular Complex Detection (MCODE) plugin was also used to evaluate the biological importance of
the constructed gene modules.

Results: A total of 13,556 DEGs were identified between the five SSc patients and seven RA patients, including 13,465
up-regulated genes and 91 down-regulated genes. Interestingly, the most significantly enriched GO terms of up- and
down-regulated genes were related to extracellular involvement and immune activity, respectively, and the top six
highly enriched KEGG pathways were related to the same processes. In the PPI network, the top 10 hub nodes and top
four modules harboured the most relevant genes contributing to the differences between SSc and RA, including key
genes such as IL6, EGF, JUN, FGF2, BMP2, FOS, BMP4, LRRK2, CTNNB1, EP300, CD79, and CXCL13.

Conclusions: These genes such as IL6, EGF, JUN, FGF2, BMP2, FOS, BMP4, LRRK2, CTNNB1, EP300, CD79, and CXCL13 can
serve as new targets for focused research on the distinct molecular pathogenesis of SSc and RA. Furthermore, these
genes could serve as potential biomarkers for differential diagnoses or therapeutic targets for treatment.
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Introduction
Systemic sclerosis (SSc) is an autoimmune disease [1]
that is often characterised by joint involvement, espe-
cially arthritis [2]. However, the degree of synovial in-
flammation in SSc has not yet been characterised
thoroughly [3]. Rheumatoid arthritis (RA) is another
autoimmune disease associated with articular damage
and consequent disability, which may lead to several

complications [4]. The pathogenesis of RA involves
excessive reaction of immune components leading to
severe inflammation of the joints. Along with recent
progress in the diagnosis of SSc and RA based on up-
dated signs and symptoms, several potential diagnostic
and therapeutic targets have been uncovered.
In general, SSc and RA are diagnosed by auxiliary

approaches such as clinical manifestations, biochemical
indicators, and X-ray findings [5, 6]. Since they are both
autoimmune diseases with similar clinical signs and
symptoms, especially joint involvement, it is not easy to
distinguish between them in some cases with uncharac-
teristic signs and symptoms. To improve the differential
diagnosis and therapy of SSc and RA, it is necessary to
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identify genetic markers that are sufficiently sensitive
and highly specific for the two diseases in order to initi-
ate the correct course of treatment.
Gene expression profiling with microarrays is regarded

as a standard method for identifying differentially
expressed genes (DEGs) and potential biological path-
ways associated with SSc [7] and RA [8]. To the best of
our knowledge, no specific genomic expression analyses
have been conducted to distinguish SSc and RA to date.
Therefore, in the present study, we investigated the
genomic expression profiles to identify DEGs between
SSc and RA using a part of the GSE93698 microarray
database, including transcriptome data of five SSc teno-
synovial biopsy samples and seven RA synovial biopsy
samples. Moreover, Gene Ontology (GO) enrichment
analyses and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analyses were used to perform func-
tional enrichment analysis and identify important bio-
logical pathways related to the identified DEGs. In
addition, the Retrieval of Interacting Genes (STRING)
database was used to construct a protein–protein inter-
action (PPI) network. Finally, the hub genes of the net-
work were analysed using Cytoscape software, which
were used to establish the most significant modules that
differentiate SSc and RA.

Material and methods
Data source
Gene expression data of seven SSc tenosynovial biopsy
samples and five RA synovial biopsy samples were
obtained from the Gene Expression Omnibus (GEO)
(http://www.ncbi.nlm.nih.gov/geo/) database. The GSE93698
data were derived from the GPL570 microarray platform
[HG-U133_Plus_2] Affymetrix Human Genome U133A
2.0 Array.

Identification of DEGs
Differentially expressed genes (DEGs), including up- and
down-regulated genes, were identified between SSc and
RA through the R package limma [9, 10] based on the
criteria of a statistically significant difference in expres-
sion levels (p < 0.05) through a t-test [11] and a fold
change (FC) > 2. Subsequently, DEGs were ultimately se-
lected according to a false discovery rate < 0.05 and
|logFC| > 1.

Functional enrichment analysis
Gene functional enrichment analyses included classifying
gene functions and identifying gene conversions, which
were performed through determining enriched Gene
ontology (GO) terms [12] and the Kyoto Encyclopedia of
Genes and Genomes (KEGG) [13] pathways with the
online tool the Database for Annotation, Visualization
and Integrated Discovery (DAVID) [14, 15]. Significantly

enriched terms/pathways were those with a P-value <
0.05 and gene number ≥ 2. In addition, GOplot was used
for visualisation of detailed information of the molecules
in functional enrichments [16].

Construction of the PPI network and module analysis
A PPI network was established using the Search Tool for
the Retrieval of Interacting Genes (STRING) database
[17] based on the significantly up- and down-regulated
DEGs to identify the most crucial genes and modules
differentiating SSc and RA. A combined score > 0.4 was
selected as the cut-off value to construct the PPI network,
which was visualised using Cytoscape software. The Mo-
lecular Complex Detection (MCODE) plugin was also used
to evaluate the biological importance of the constructed
gene modules [18]. The top 10 essential nodes ranked by
degree were selected, and modules were selected with an
MCODE score > 6 and number of nodes > 6.

Results
DEGs identification by microarray expression profiling
Using the GEO GSE93698 dataset of microarray data,
we identified a total of 13,556 DEGs (p < 0.05 and
|logFC| > 1) between SSc and RA samples, including
13,465 up-regulated genes and 91 down-regulated genes.
Thus, the great majority of genes that are specifically in-
volved in the SSc pathological process were up-regulated
compared to those in RA. The heatmap of the DEGs
identified is shown in Fig. 1.

GO functional enrichment
To investigate the functions of the large range of gene
signatures obtained, we performed GO enrichment ana-
lysis from the GO database [19] including terms of the
biological process, molecular function, and cellular com-
ponent categories for the top 1000 up-regulated genes
and 91 down-regulated genes (Fig. 2).
Ten terms were enriched for the up-regulated genes,

which were predominantly related to extracellular activ-
ities in the biological process, molecular function, and cel-
lular component categories. In the cellular component
cluster, representative terms were related to proteinaceous
extracellular matrix (ECM), ECM, extracellular space, and
extracellular region. In addition, the biological process
cluster included terms of cell adhesion, ECM organization,
and positive regulation of osteoblast differentiation. The
significantly enriched terms for the molecular function
cluster were heparin binding, growth factor activity, and
ECM structural constituent. The up-regulated genes
COMP, CYR61, THBS1, FGF2, THBS4, CTGF, FBN1,
PRELP, OGN, FBLN1, POSTN, BMP4, and LAMB1 ap-
peared frequently in these terms (Fig. 2). However, the 15
enrichment terms related to the down-regulated genes
were mainly related to immune activities, which could
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have important clinical implications. These representative
down-regulated genes enriched in these terms were
C1QC, IGLC1, IGHD, IGKC, IGLV6–57, IGLL5, IGLV1–
44, and IGHM.

KEGG pathways analysis
KEGG pathway analysis identified the top six important
KEGG pathways of the up- and down-regulated DEGs
(Table 1), including ECM–receptor interaction, Wnt sig-
nalling pathway, transforming growth factor-beta
(TGFβ) signalling pathway, primary immunodeficiency,

hematopoietic cell lineage, and cytokine–cytokine recep-
tor interaction.

Construction of the PPI network and module analysis
The top 1000 up-regulated genes and 91 down-regulated
genes were mapped by the STRING database to establish
a PPI network (Fig. 3). Protein pairs with a combined
score of > 0.4 were selected. According to the informa-
tion from STRING, the top 10 hub nodes with high de-
grees were identified using the Cytoscape tool, including
LRRK2, IL6, EGF, JUN, CTNNB1, FGF2, BMP2, FOS,
BMP4, and EP300 (Additional file 1: Table S1). The

Fig. 1 Heatmap of the 13,556 differentially expressed genes (DEGs) between systemic sclerosis and rheumatoid arthritis
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Fig. 2 Gene Ontology enrichment analyses. a Gene Ontology enrichment of up-regulated genes. b Gene Ontology enrichment of down-
regulated genes. The criteria for enrichment were: P-value < 0.05, FDR < 0.05, and fold enrichment > 1. Each gene was assigned to at least
six terms
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Table 1 Top 3 the most significantly enriched KEGG pathways of up and down regulated DEGs respectively

Regulate Term Count P-value Genes Fold Enrichment

up hsa04512:ECM-receptor interaction 16 4.35E-06 COL4A4, ITGA1, ITGA2, ITGA10, CHAD, LAMA2, CD36, COMP,
RELN, TNN, THBS1, LAMB1, COL24A1, THBS2, COL11A1, THBS4

4.194075

up hsa04310:Wnt signaling pathway 19 2.80E-05 VANGL2, MMP7, PPP3R1, FZD7, FZD6, CTNNB1, WNT2, GPC4,
PLCB4, EP300, DKK1, PRICKLE1, SFRP2, JUN, SFRP4, PRICKLE2,
WNT9A, SOX17, BAMBI

3.139857

up hsa04350:TGF-beta signaling pathway 14 6.24E-05 BMP4, BMP2, FST, BMPR2, SMAD1, ACVR1C, INHBA, EP300, ID1,
BAMBI, THBS1, BMPR1B, BMP5, ACVR1

3.80088

down hsa05340:Primary immunodeficiency 6 3.89E-07 CD19, CD3D, CD8A, IL2RG, CD79A, IL7R 36.95187

down hsa04640:Hematopoietic cell lineage 7 2.03E-06 CD19, CD3D, CD8A, MS4A1, CD2, IL7R, CSF1R 17.24421

down hsa04060:Cytokine-cytokine receptor
interaction

6 0.003777 CXCL13, IL21R, TNFRSF17, IL2RG, IL7R, CSF1R 5.462451

KEGG Kyoto encyclopedia of genes and genomes, DEGs differentially expressed genes

Fig. 3 Protein–protein interaction network constituted by differentially expressed genes identified in this study. Red nodes represent up-
regulated genes, and green nodes represent down-regulated genes
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largest node degrees were detected for CXCL5, CXCL13,
GPR18, NPY1R, ADRA2A, CXCR7, AGT, GNAI1,
HTR5A, HCAR3, GNG11, P2RY14, ANXA1, PPBP, C3,
PNOC, GNG12, and APLNR (Additional file 2: Table
S2), suggesting that these genes may play an important
role in the pathological process.
The top four modules of the PPI network are pre-

sented in Fig. 4. Enrichment analyses of these modules
(Table 2) showed that genes in module 1 (including
PPBP, CXCL13, GNG12, CXCL5, HTR5A, GNAI1,
P2RY14, HTR5A, and ADRA2A) were associated with
chemokine signalling pathway, serotonergic synapse, and

neuroactive ligand-receptor interaction. Module 2 in-
cluded NEDD4, CDC27, UBE2E2, and TCEB1 associated
with ubiquitin-mediated proteolysis and renal cell carcin-
oma pathways. In addition, pathways in cancer, signalling
pathways regulating stem cells, and the Hippo signalling
pathway were central components of module 3, which
was enriched in the key genes JUN, WNT9A, FGF2,
BMP4, BMP2, IL6, COL4A4, and FGF13, among others.
Finally, module 4 included the genes PLCB4, MMP1,
CTNNB1, EGF, F2R, and LPAR4, associated with pathways
in cancer, Rap1 signalling pathway, and phospholipase D
signalling pathways.

Fig. 4 Four significant modules identified from the protein–protein interaction network using the molecular complex detection method with a
score > 6.0: Module 1 (MCODE score = 18), Module 2 (MCODE score = 11), Module 3 (MCODE score = 8.035), and Module 4 (MCODE score = 7.048)
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Discussion
Despite progress in the differential diagnoses between
SSc and RA, a more effective and sensitive method for
helping to distinguish between these two diseases is
needed. The present findings highlight some distinct
pathological molecular mechanisms of these two dis-
eases, which may provide further information as thera-
peutic targets. Of the 13,556 DEGs including 13,465
up-regulated genes and 91 down-regulated genes identi-
fied between SSc and RA samples. Interestingly, the
number of up-regulated genes were far more than the
number of down-regulated genes, which was related to
huge different characteristics between these two differ-
ent diseases. The majority were up-regulated in SSc;
these genes were mainly related to extracellular activ-
ities, which should be taken into account in further
studies on SSc pathology. SSc is an autoimmune rheum-
atic disease with multisystem fibrosis manifestations. In
normal physiological conditions, fibroblasts can be pro-
tected by the ECM, whereas the damaged fibroblasts in
SSc attached to the ECM are destroyed [20]. Abnormal
ECM remodelling mechanisms are linked to the fibrosis
that occurs in connective tissue diseases. Excessive
ECM, including collagens, hyaluronic acid, fibronectin,
and proteoglycans, promotes scarring and sustained fi-
brosis, leading to excessive scar tissue [21]. Some studies
suggested that overexpression of ECM genes may have a
central effect in fibrotic cells [22–24]. Pathologically
activated fibrosis arises from high accumulation of ECM
components, highlighting a novel therapeutic approach
in SSc [25]. However, we further showed that many of
the down-regulated genes in SSc were related to

immune activities, which warrants further investigation
to identify new therapeutic targets. Indeed, the patho-
logical process of RA is well known to be related to an
excessive or dysregulated immune response, including
an abnormal autoimmune response and genetic suscepti-
bility. Immune cells such as dendritic cells, T cells, B
cells, and natural killer cells are all related to the devel-
opment of RA [26]; thus, genes regulating immune ac-
tivities have been highlighted as potential therapeutic
targets for RA [27]. For example, anti-CD79A antibody
therapy was shown to enhance immune system recovery
against autoimmunity [28]. Thus, our results further in-
dicate that fibrosis and other clinical manifestations may
be related to the immune response.
KEGG pathway enrichment analyses of the identified

DEGs demonstrated six key significantly enriched path-
ways, including ECM–receptor interaction and primary
immunodeficiency, which is in line with the known
pathological mechanisms. However, the other pathways
identified, including Wnt signalling pathway, TGFβ signal-
ling pathway, hematopoietic cell lineage, and cytokine–
cytokine receptor interaction, deserve new attention. The
selective stabilization of β-catenin leads to excessive ECM
production [29], and Wnt may induce the fibroblast acti-
vation and abundant collagen production related to SSc
[30]. Indeed, the Wnt pathway has been proposed to be a
core factor involved in the progression of SSc [30]. More-
over, the Wnt cascade tightly interacts with TGFβ signal-
ling, which may be involved in ECM activities [31]. Cells
of the hematopoietic lineage such as CD79a-positive B
cells are helpful for diagnosing RA [32], and this pathway
has deep associations with many immune hematopoietic

Table 2 KEGG pathway enriched by differentially expressed genes in different modules

Term Description P-value Genes

Module1

hsa04062 Chemokine signaling pathway 1.04E-08 PPBP;CXCL13;GNG12;GNG11;CXCL5;GNAI1

hsa04726 Serotonergic synapse 2.68E-06 HTR5A;GNG12;GNG11;GNAI1

hsa04080 Neuroactive ligand-receptor interaction 3.63E-06 P2RY14;NPY1R;APLNR;HTR5A;ADRA2A

Module2

hsa04120 Ubiquitin mediated proteolysis 6.7E-07 NEDD4;CDC27;UBE2E2;TCEB1

hsa05211 Renal cell carcinoma 0.035716 TCEB1

Module3

hsa05200 Pathways in cancer 5.39E-12 CSF1R;JUN;FZD7;FZD6;PDGFA;WNT9A;FOS;FGF2;BMP4;
FGF7;BMP2;IL6;COL4A4;FGF13

hsa04550 Signaling pathways regulating pluripotency of stem cells 7.52E-09 BMP4;BMP2;ACVR1C;FZD7;FZD6;WNT9A;BMPR1B;FGF2

hsa04390 Hippo signaling pathway 1.35E-08 BMP4;BMP2;FZD7;FZD6;WNT9A;BMPR1B;CTGF;BMP5

Module 4

hsa05200 Pathways in cancer 1.73E-10 PLCB4;EDNRB;EGF;MMP1;ITGA2;F2R;CTNNB1;LPAR4;PTGS2

hsa04015 Rap1 signaling pathway 8.32E-08 PLCB4;EGF;F2R;CTNNB1;LPAR4;THBS1

hsa04072 Phospholipase D signaling pathway 4.31E-07 DNM3;PLCB4;EGF;F2R;LPAR4

Top 3 terms were selected according to P-value when more than 3 terms enriched terms were identified in each category
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cells. Similarly, the cytokine–cytokine receptor interaction
is another important component of the RA pathological
mechanism [33]. Therefore, monitoring these signalling
pathways may aid in the prediction of the progression of
these two diseases.
The PPI network constructed with the DEGs resulted

in 10 hub genes that can be used to differentiate be-
tween SSc and RA: LRRK2, IL6, EGF, JUN, CTNNB1,
FGF2, BMP2, FOS, BMP4, and EP300. These genes have
also been previously highlighted to play a role in the
pathogenesis of SSc and RA. IL-6, which is linked to the
ECM, can regulate collagen synthesis by fibroblasts in
SSc [34, 35], and EGF was shown to up-regulate TGFRII
expression in SSc fibroblasts [36]; thus, EGFR signalling
was suggested as a therapeutic target in fibrotic diseases
[37]. FGF-2 plays a role in the pathogenic process of pul-
monary arterial hypertension, which modifies pulmonary
vascular remodelling leading to the vascular manifesta-
tions in SSc [38]. FGF, which regulates the synthesis of
collagen and ECM components, is up-regulated by
TGFβ in SSc, resulting in an increase in BMP signalling
[39]. The AP-1 family members c-Jun, c-Fos, and JunD
are also known to play an important role in SSc [40, 41].
JunD is a downstream mediator of TGFβ signalling [40],
and Jun N-terminal kinases are regarded as intracellular
mediators that may be affected by TGFβ [41]. Thus,
almost all of these genes are associated with TGFβ,
which is known to play a key role in fibrotic diseases.
LRRK2 [42] and CTNNB1 [43] were also reported to
interact with the Wnt pathway in fibromatosis. How-
ever, EP300 is mainly known to influence specific T
cell states [44]. Although LRRK2, CTNNB1, and
EP300 have not been previously clearly associated
with SSc, our results suggest that they may be poten-
tial biomarkers of this disease, and thus worthy of
further investigation.
Module analyses of the PPI network further revealed

the differential development of SSc and RA. CXCL13 in
module 1, related to the chemokine signalling pathway,
has been linked to joint inflammation and the develop-
ment of autoimmune disorders, including RA [45].
CXCL13 is a proinflammatory cytokine that can serve as
a biomarker in early RA and reflects the severity of
synovitis [46]. Thus, CXCL13 appears to represent a
new direction for RA treatment. FGF2 and IL6 in mod-
ule 3 are regarded as important factors for SSc develop-
ment based on the background summarised above, as is
EGF, part of module 4, which mediates the up-regulation
of TGFβ receptor in SSc. However, many genes identi-
fied in this study have not been previously associated
with SSc or RA, such as NEDD4, CDC27, and UBE2E2
in module 2. Thus, attention should be focused on these
genes in future work as potential biomarkers and thera-
peutic targets.

Conclusions
This study identified a series of core genes and pathways
that differentiate SSc and RA. Compared to RA, the
majority of the up-regulated genes in SSc were related to
extracellular activities, whereas the down-regulated
genes were mainly related to immune activities. These
two distinct processes can provide a new direction for
methods of clinically distinguishing between these two
diseases by focusing on the involvement of extracellular
and immune activities. On the one hand, IL6, EGF, JUN,
FGF2, BMP2, FOS, and BMP4 should be further studied
as they may play an essential and specific role in the SSc
pathogenesis. On the other hand, CD79 and CXCL13
might be representative genes for RA. These genes
might be used as biomarkers to improve the differential
diagnosis and treatment of SSc and RA. However, many
of the other genes identified in this study have not been
previously reported to be associated with these diseases,
such as LRRK2, CTNNB1, and EP300, and should not be
ignored. Thus, further studies and clinical trials are
needed to verify our findings and establish reliable diag-
nostic or therapeutic targets.
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Additional file 2: Table S2. The modules of the PPI network. Four
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