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Abstract

Background: Bread wheat is one of the most important crops in the world. Its domestication coincides with the
beginning of agriculture and since then, it has been constantly under selection by humans. Its breeding has
followed millennia of cultivation, sometimes with unintended selection on adaptive traits, and later by applying
intentional but empirical selective pressures. For more than one century, wheat breeding has been based on
science, and has been constantly evolving due to on farm agronomy and breeding program improvements. The
aim of this work is to briefly review wheat breeding, with emphasis on the current advances.

Discussion: Improving yield potential, resistance/tolerance to biotic and abiotic stresses, and baking quality, have
been priorities for breeding this cereal, however, new objectives are arising, such as biofortification enhancement.
The narrow genetic diversity and complexity of its genome have hampered the breeding progress and the
application of biotechnology. Old approaches, such as the introgression from relative species, mutagenesis, and
hybrid breeding are strongly reappearing, motivated by an accumulation of knowledge and new technologies. A
revolution has taken place regarding the use of molecular markers whereby thousands of plants can be routinely
genotyped for thousands of loci. After 13 years, the wheat reference genome sequence and annotation has finally
been completed, and is currently available to the scientific community. Transgenics, an unusual approach for wheat
improvement, still represents a potential tool, however it is being replaced by gene editing, whose technology
along with genomic selection, speed breeding, and high-throughput phenotyping make up the most recent
frontiers for future wheat improvement.

Final consideration: Agriculture and plant breeding are constantly evolving, wheat has played a major role in
these processes and will continue through decades to come.
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Background
Bread wheat (Triticum aestivum L.) is one of the most im-
portant crop species, responsible for the emergence and
development of agriculture and has fed, and continues to
feed, a large part of the world’s population across many
centuries [97, 106]. Wheat has been improved by man
over the last 8000 to 10,000 years ago when the species
first arose. Initially it happened in an unconscious way,

then intentionally, but empirically, and then, for more
than a century, based on scientific knowledge [18, 64].
Wheat breeding, as for many other crops, has been

evolving fast, both in terms of basic science, methods
and tools. The literature on wheat breeding is vast,
including countless scientific papers, reviews and even
dense book collections already published. Therefore, all
relevant aspects and examples cannot be covered in a
single text. On the contrary, we do encourage readers to
go through this bibliographic ever growing wealth for a
deeper understanding on any given topic. Thus, the ob-
jective of this review is to provide a brief and valuable
synthesis on some selected aspects related to the history,
but especially, current advances in wheat breeding, de-
voted especially to students and researchers with little or
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even no knowledge on the theme. Through this review,
the reader can have a quick and general overview on the
discussed topics and, when necessary, get a direction to
start searching for further literature, as we have tried to
cite the most important and recent papers on each topic.
Therefore, in the next sections we show the origin of
this species and how it became so important with a brief
history of wheat cultivation and breeding. Priorities and
particularities of wheat breeding are presented. Special
consideration is given to new approaches and tools that
are currently under development, and the ones that
lately reappeared. Finally, the promising future and
perspectives are discussed.

Origin and importance
One of the fathers and lifelong ally of agriculture
Bread or common wheat is undoubtedly one of the most
important cultivated plants, in fact, in addition to its an-
cestry, the cereal represents a large part of the history of
agriculture itself [8, 18, 44, 58, 93, 97].
Today, wheat is the basis of a significant part of the

world’s diet, being an important source of energy (pro-
viding ca. of 20% of world population demand), and pro-
tein (also providing ca. 20%), as well as vitamins and
other beneficial compounds, not only for humans, but
also as animal feed [42, 106].
It is grown from 67° North to 45° South, including a

wide range of altitudes, but it is less cultivated in trop-
ical regions [33]. In 2016, more than 749 million tonnes
of this cereal were produced on 220 million hectares
around the world, which puts wheat in second place re-
garding production among the cereal crops (behind
maize - Zea mays L.) but in the first position regarding
area harvested amongst all crops [32]. Approximately
95% of wheat cultivated is hexaploid with the remaining
5% being durum wheat (T. turgidium L.) and few other
less important types [106].

The origin of the species
Bread wheat is an allohexaploid species (2n = 6× = 42,
AABBDD genomes), resulting from the combination of
3 interrelated diploid genomes [28, 66, 79, 83]. Donors
of the A genome (T. urartu) and B genome (closely re-
lated to Aegilops speltoides), diverged from a common
ancestor about 7 million years ago. These two species
first generated (~ 5.5 million years ago) the donor of the
D genome (Ae. tauschii), through hybridization and
homoploid speciation. Less than one million years ago
emmer wheat (T. turgidum), an allotetraploid with
AABB genomes became into existance. Finally, from
8000 to 10,000 years ago, probably in the Fertile Cres-
cent, in a region that nowadays comprises Northern
Iran, the hybridization between T. turgidum and Ae.
tauschii gave rise to the hexaploid T. aestivum, which

after domestication and centuries of cultivation and se-
lection, resulted in the bread wheat that is cultivated
today [27, 28, 53, 67, 68, 79, 83, 98].
Unlike other cultivated species, hexaploid wheat was

not selected from a wild species, but arose from the
hybridization between a species already cultivated by
man that time (emmer wheat), so it is possible to say
that maybe there was never any T. aestivum in the wild
[106]. The reasons why this cereal became so widely
adopted by man include its high environmental adapt-
ability, thanks to its allopoliploid nature, which has con-
ferred to wheat the so-called “genomic plasticity”. Also,
due to its excellent food/feed qualities, not only regard-
ing carbohydrates, proteins and vitamin content, but
also for the unique elastic property of its gluten, which
provided a more diverse use for its flour [27, 106].

The beginning and evolution of wheat cultivation and
breeding
The emergence of modern T. aestivum occurred due to
agriculture. Thanks to growing its ancestor (emmer) in an
area with spontaneous occurrence of Ae. tauschii, the
inter-specific hybridization that generated this species oc-
curred [27]. After its emergence, cultivation gradually
began to predominate around its center of origin and then
expanded to several regions of the globe, improved by nat-
ural selection and man in an unintentional way [18].
The “intentional” breeding, even if empirical, began at

the end of the XVIII century. The first reported attempts
to allow for cross-fertilization of different types of plants
was made by Knight (1787) in England. These crosses
allowed for the observation of improvements especially
for disease resistance [64]. At the end of the XIX cen-
tury, Vilmorin, in France, and Rimpau in Germany,
amongst other breeders, made important contributions
in the development of superior wheat genotypes by
man-made hybridization or simply selection, motivated
by Darwin [22, 23], but occurred without a clear under-
standing of important foundations of their work [64].
Breeding from a solid scientific base began only after the
rediscovery of Mendel’s findings, at the beginning of the
last century. Biffen’s classic work [7] was probably the
first to validate such knowledge in wheat, once again fo-
cusing on disease resistance. Nilsson-Ehle [76] greatly
contributed to the study of quantitative traits involving
grain color in wheat.
Other advances took place gradually over the decades,

until a major leap was made with the so-called “Green
Revolution” of the mid-1960s, when wheat and rice
(Oryza sativa L.) were protagonists [9, 29, 80, 91]. This
revolution consisted in the development of “modern”
cultivars - those of wheat mainly by CIMMYT, the Inter-
national Center for Maize and Wheat Improvement,
Mexico. Those were short statured (semi-dwarf),
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photoperiod insensitive and high yielding spring culti-
vars. This was only possible due to the incorporation of
the genes Reduced height (Rht) and Photoperiod (Ppd),
which have had extremely important effects on the adapt-
ability of this species. Ppd-D1a, which is an insensitive al-
lele to the photoperiod that reduces flowering time, and
Rht-B1b and Rht-D1b, which makes the cereal insensitive
to gibberellin, shortened plant’s stature. These genes are
today widespread in the wheat elite germplasm all around
the world and new alleles are still under study, with poten-
tial to contribute to this trait [10, 125, 128].
These new genotypes became widely adopted, especially

in developing countries, and generated an impact on the
reduction of hunger and poverty, with huge repercussions
[9, 29, 78, 80]. The Nobel Peace Prize awarded to Dr. Nor-
man E. Borlaug deserves a special mention here, due to
his decisive role in this revolution [9].
Since then, wheat breeding has advanced even further

with new technologies such as molecular markers, the
recent availability of a reference genome sequence and
annotation, and even the recent use of techniques such
as genome editing, genomic selection, speed breeding
and high-throughput phenotyping. The evolution of
wheat breeding accross time is briefly illustrated in Fig. 1,
highlighting phases and important events.

Wheat breeding: priorities and some general aspects
The priorities in wheat breeding
The main objectives of wheat breeding have been similar
over many decades. Increasing the yield potential has
been prioritized in order to meet the food requirements
of an ever increasing population [9, 80].
Probably the second most important trait is disease re-

sistance, as from the first breeding attempts by Knight in
1787 until today, in different countries [64]. For in-
stance, “old diseases”, such as the rusts, are still a cause
of concern for wheat cultivation, but new ones are
appearing, such as wheat blast, considered one of the
most recent and concerning threat for wheat cultivation
worldwide [127].
Third, is tolerance to abiotic stresses, especially

drought and heat – the latter is a borderline to cereal
crop expansion, cold and acid soils (aluminum), and
various quality traits. Finally, all the others must come,
such as resistance to insects, lodging, double-purpose
(forage and grain), and improved nutrient use and grain
biofortification efficiency, among numerous others. This
ranking is based on a general overview on the vast avail-
able literature, however this order of priority more than
certainly varies within each environmental region and
over time.

Fig. 1 Wheat breeding timeline. Three main phases can be defined in wheat breeding history: the “unconscious”, the “empirical” and the “scientific”
breeding, this latter is illustrated with several important events
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As already mentioned, publications on wheat breeding
are vast, fortunately there has been a number of reviews
already published, which summarize the most important
steps already taken for different traits, ie., yield potential
[29, 91], stem rust resistance [107], drought tolerance
[74] and biofortification, which should grow in import-
ance over the next few years [129].

New priorities in wheat breeding
Most future priorities in wheat breeding should remain
the same, but the need for faster development and accu-
mulation of knowledge from different fields should pro-
vide new strategies and paths to reach these goals.
Increasing photosynthetic capacity has been shown to be
one of the most important barriers to improve wheat yield
potential and there is theoretical evidence that it could be
enhanced by the insertion of genes for C4 carbon fixation,
whose strategy has merited investment [87, 90].
Wheat grain is known to be rich in gluten, a trait that

is critical for baking, but negative for consumption by
celiac, and also non-celiac gluten-sensitive people has
been a largely discussed topic among nutritionists [15,
37]. This may lead to a potential reduction in wheat con-
sumption in the coming decades, unless we can provide
grain that does not possess this disadvantage. Fortu-
nately, there is evidence of some wheats that possess a
gluten, but of a chemically different type, which can be
consumed by people with celiac disease, potentially be-
coming an important target for wheat breeding in forth-
coming years [95, 111].

Special aspects on wheat breeding
Wheat is a self-pollinated species. Therefore, the con-
ventional structure of its breeding programs do not dif-
fer much from other autogamous plants. It includes the
use of artificial hybridizations between previously se-
lected genotypes, something already performed for more
than two centuries, and different forms of selection
within segregating populations [64, 100]. It is recognized
that these processes were, and will continue to be, the
main responsiblity for the development of wheat culti-
vars worldwide. However, new tools and approaches are
assisting this process, increasing its success rate and
diminishing costs, time and labour.
Improving wheat may be more difficult than for many

other crops, since the breeder needs to “match” quantity
and quality, allying yield with grain and flour quality,
which needs are not a constant concern for crops like
soybean (Glycine max L.) or maize (Zea mays L.), which
can, for the most part, focus on yield [106]. Also, it is a
species with restricted genetic variability when compared
to most of other crops. Moreover, its genome size, com-
plexity and polyploid nature constitute a challenge when
applying some biotechnological techniques.

The restricted genetic diversity
Wheat is recognized to have restricted genetic variabil-
ity, when compared to most other crops [18, 20]. This is
due to several reasons: 1) it is an allohexaploid generated
by crosses involving three highly interrelated diploid
species, and poplyploidization is a force which restricts
itself genetic variability; 2) another reason, suggests that
few plants of the ancestral species were involved in the
formation of wheat, also restricting its initial genetic
variability [27, 58]; 3) Finally, it is a young species, ca.
8000 to 10,000 years old, which is insufficient time for
the species to accumulate mutations or to receive genes
or alleles by natural or artificial interspecific cross-
breeding processes [20, 28, 66].
Domestication, centuries of cultivation, and modern

breeding have further restricted the genetic variability of
several cultivated species, and wheat is among them [34,
71, 89, 119]. It is important to remember that wheat was
one of the first species to be domesticated and culti-
vated, further decreasing its variability due to constant
selection cycles since then [18, 58, 93]. The impact of
the narrowing of wheat variability is visible through
current projections, which show that the cereal might
not meet its demand in few decades [88], unless mea-
sures are taken in order to broaden its genetic base.
To broaden the genetic diversity available for wheat

breeding, different techniques will need to be applied,
including induce mutation, genetic transformation, gen-
ome editing, and introgressions from species of the sec-
ondary and tertiary gene pools.

Resurgent and current approaches in wheat breeding
Introgressions
Among all crop species, wheat is probably the one in
which most research has been invested regarding the use
of wild and cultivated relatives as source of variability
for its improvement. The attempt to incorporate traits
of related species into wheat germplasm is not new. In
fact, the attempts in this sense began long ago, as early
as plant breeding itself [6]. If, on one hand, wheat is re-
stricted in variability within its germplasm, there is an
immeasurable richness in variation found in related spe-
cies belonging to its secondary and tertiary gene pools
[25, 102, 131].
The most important introgression to date in wheat in-

volved a chromosomal translocation 1RS-1BL between
wheat and rye (Secale cereale L.), generated in the first
third of the last century, which increased wheat yield po-
tential and resistance/tolerance to biotic and abiotic
stresses. This segment is still present in many of import-
ant cultivars currently used [21, 85, 101]. The researcher
E.R. Sears deserves also a special mention here, due to
his great contribution to this field. Today, there are sev-
eral excellent chromosome manipulation studies in
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progress (e.g. [54]). However, there is a consensus that
the practical use of introgressed genes in the develop-
ment of superior cultivars has in the past been very lim-
ited and should be further explored [132].
Another strategy in this field is the development of syn-

thetic wheat, repeating the interspecific crosses that oc-
curred in nature that led to the formation of hexaploid
wheat [61, 130]. In this method, different accessions of the
species T. monococcum, T. turgidum, and Ae. tauschii can
be used for the formation of new genetic constitutions of
wheat, greatly increasing the genetic variability of the
primary gene pool [73]. Numerous synthetic wheat germ-
plasm pools have been developed by CIMMYT [130]. This
illustrates an advantage that wheat possesses, as an allo-
hexaploid, when compared to diploid species.
The use of other species in wheat pre-breeding pro-

grams has been an important field of research (for a
complete review, see [72]). Recently, however, it seems
to be reaching a new momentum, driven by a remark-
able shortage of genetic diversity in wheat, accompanied
by an increased need for improved adaptability for the
crop. This adaptability is needed to counteract the un-
favorable conditions brought by the ongoing climate
changes. Enhanced technologies for introgression detec-
tion, such as high-throughput genotyping, have moti-
vated investiments in this field. Other potential
approaches, such as gene editing will be further discussed
in a dedicated section [12, 54, 131].

Mutagenesis
Mutation induction, whether via chemical or physical
mutagens, has been widely used in order to increase the
genetic variability in several cultivated species, including
wheat [77]. The polyploid nature of wheat confers a kind
of buffer effect, in which mutations in one of its ge-
nomes can be compensated by homoeologous genes
masking their effect making them difficult to be detected
[77]. Fortunately, TILLING methods [108, 114] and
high-resolution melting analysis [26] have proven to be
efficient for the detection of mutations in the different
genomes of hexaploid wheat.
From 1960 to 2017, 256 wheat cultivars were generated

by mutagenesis in different countries and have been regis-
tered in the FAO/IAEA database (https://mvd.iaea.org). In
this repository [31], all cultivars are described with infor-
mation about how the mutations were induced and fo-
cuses on the value-added attributes. Among the many
examples of agronomically important mutations are resist-
ance to herbicides of the imidazolinones group [84] and
increases in amylose content and starch resistance [109].

Molecular markers and new genotyping approaches
The use of molecular markers for QTL mapping and
marker-assisted selection (MAS), such as for resistance

to fusarium head blight [13] and drought [39] has been
growing and the accumulation of data generated during
the past decades has allowed us to perform different
meta-analyses [39]. From the 1990s to 2000s, AFLP, RFLP,
and SSR were the most used markers [17, 40, 46, 75, 110].
However, recently a revolution occurred, in which science
changed from the use of a few markers, from the types
mentioned above, to thousands of single nucleotide poly-
morphism (SNP) markers using high-throughput platforms.
This was initiated with DArT markers [1] and then with
SNPs evaluated through genotyping arrays such as Illu-
mina® 9 K iSelect Beadchip Assay [16], Illumina® iSelect 90
K SNP Assay [121] and Axiom® 820 K SNP array [126], in
which respectively 9000 to nearly 820,000 SNPs can be
evaluated in a single analysis. Also, using genotyping by
sequencing (GBS), thanks to the arrival of next generation
sequencing technologies, maps containing 20 to 450 K loci
have already been generated for wheat [82, 96].
Similarly to other crops, genetic mapping also evolved

from mapping populations generated from crosses be-
tween only two contrasting parents to genome-wide as-
sociation studies (GWAS), in which hundreds of diverse
accesses are evaluated on each study, thus allowing the
capture of a larger genetic diversity and a deeper look in
the causal variation between agronomically interesting
phenotypes [3, 14, 38, 56, 60, 81].

Genomic selection
Although Marker Assisted Selection (MAS) has proven to
be useful in a number of situations in wheat breeding, it
has the limitation of being only able to aid the selection
for a few genes or alleles at a time. However, it is well
known in crop breeding that most agronomic traits
present a quantitative nature, are governed by numerous
genes, most of these with very small effect on the pheno-
type. In this regard, genomic selection (GS) came as a
revolutionizing ally, also in animal breeding [69]. The ap-
proach aims ultimately to perform selection and predic-
tion of breeding values based only on genotyping, within a
model calibrated with phenotypic values, and with a whole
genome perspective, i.e., taking into account genomic
polymorphisms in linkage disequilibrium with as many as
possible genes with effect on a given trait [51].
The number of studies applying GS in wheat breeding

are at an increasing rate. One of the main measures to
assay the effectiveness of GS is its accuracy, i.e., how
much the prediction compares with the real phenotypes.
Applying genotyping by sequencing, GS for wheat yield
under irrigated and drought conditions showed accur-
acies of 0.28 and 0.45, respectively, which are low to
moderate values [81]. On the other hand, GS for fusar-
ium head blight resistance showed moderate to high ac-
curacies, being 0.82 the highest value found, for
fusarium damaged kernels trait [4]. High accuracies are
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pursued in this approach, and many factors affect its
value, such as the heritability of the trait, the number
and quality of the markers, the GS statistical model
adopted, among others [43]. In this regard, Bassi et al.
[5] proposed different schemes dedicated to the imple-
mentation of GS in wheat breeding.

The reference genome sequence and annotation
In 2005, efforts to generate a reference genome of wheat
for the scientific community began, with the establish-
ment of the International Wheat Genome Sequencing
Consortium (IWGSC). Nine years latter, in 2014, the
first version of this sequence, still considered as a draft,
was published for the hexaploid wheat cultivar Chinese
Spring [47]. This huge and complex sequence, estimated
in 16 to 17 Gb in total, has been gradually assembled,
improved and made available through the repository of
the consortium (https://www.wheatgenome.org). Finally,
after another 3 years, a first version of the annotation
has been made available [48], which has also been conti-
nuosly improved [49]. In addition to IWGSC, another
research group was responsible for the first near-
complete assembly of the hexaploid bread wheat gen-
ome, with a total of 96% of its sequence, also of Chinese
Spring [136].
Now these reference genomes, especialy the one made

available by IWGSC, through its platform for public ac-
cess, are a powerful tool for breeding and other genetic
studies on this crop, being used to better understand
wheat evolution [28, 66] and for genome wide associ-
ation studies [3], among many other examples of use.
The completion of the first wheat reference genome of

the Chinese Spring cultivar has been considered a step-
change by researchers. However, it is obvious that more
representatives from the species should also be sequenced,
for a more effective use of genomics in breeding. It moti-
vated the establishment of 10+ Wheat Genomes Project \
(http://www.10wheatgenomes.com/). This global partner-
ship aims to characterize the wheat ‘pan genome’, and will
generate at high quality wheat genome assemblies and de-
velop strategies and resources to compare multiple wheat
genome sequences from around the world.

Hybrid breeding
In some crops, such as maize and rice, the development
and cultivation of hybrid cultivars is common, not re-
cent and with clear advantages over the cultivation of
open pollinated populations or inbred lines. For wheat,
however, less than 1% of the area is cultivated with hy-
brids [52, 63]. After unsuccessful attempts during the
past decades, research in the development and cultiva-
tion of hybrids seems to be becoming one priority in
wheat breeding [63, 124].

This is due to a huge accumulation of knowledge and
new technologies, and recent results are promising. The
use of genomic tools to analyze the heterotic pattern
among large groups of lines has proved to be efficient in
obtaining highly productive hybrids [135], with genome
wide selection being the most advantageous method of
prediction [60]. In this sense, several hybrids have shown
to be highly advantageous regarding yield [62] and re-
sistant to diseases [70], while several difficulties associ-
ated with seed production are being overcome [124].

Genetic transformation (transgenics)
The cultivation of transgenics is still a debate topic in our
society. Its acceptance is not unanimous around the
world, either because of social or religious reasons [106].
The scientific results have not been able to overcome the
fear on its potential effects on human health [45, 65]. This
is why there are not many records of the use of transgenic
wheat cultivars [116], not allowing its comparison with
crops such as soybean, maize or cotton, even after 27 years
of the first transformed wheat [117]. Indeed, authors have
termed wheat as the cereal abandoned by GM [127]. Re-
search results, however, have been encouraging, generat-
ing genotypes with improved resistance to powdery
mildew (Blumeria graminis) [134], leaf spot caused by
Bipolaris sorokiniana [50] and fusarium head blight
(caused mainly by Fusarium graminearum) [59]. Also, tol-
erance to drought [118], salinity and freezing [35] and
even improvement in baking traits [86] have been
achieved, among other traits [116]. Another alternative
tool is the creation of cisgenic plants, where transferred
genes come from the same species, something that has
proven to be more easily accepted by society [113]. Des-
pite these considerations, genetic transformation has been
quickly replaced by genome editing, a very powefull ap-
proach, as presented in the next topic.

Genome editing
Among the most recent and promising innovations in
terms of biotechnology and plant breeding involves
genome or gene editing [11, 99]. This technique can ac-
curately target segments of the genome for modification,
either by deletion, insertion or substitution of nucleo-
tides [99]. In wheat, despite the great complexity of its
extensive, redundant, and polyploid genome, several at-
tempts have proven to be successful [105, 115, 122, 133].
Even a specific protocol for this species has already been
established using the CRISPR/Cas9 system [104]. Among
the most exciting results obtained with this technique is
the simultaneous modification of three homoeo-alleles
of the same gene, i.e., being capable of modifying this
gene in all three different genomes, demonstrating the
precision that these methods have been able to reach
[122].
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Gene editing can also be applied as a tool for gene
introgression from wild relatives into wheat background,
in which the linkage drag can be mitigated by precise
gene replacement [120].

Meiotic recombination manipulation
Crop breeding relies largely on meiotic recombination,
which allows for recombination of genes/alleles in different
new genetic compositions, thus allowing selecting new im-
proved cultivars [57]. Controlling this process would be of
high interest for breeders. In bread wheat, the Ph1 locus is
a well-characterized regulator of this process, whose main
role is allowing only homologous chromosomes (belonging
to the same genome) to pair and recombine during meiosis
[57, 94, 103]. In this regard, there are mutant lines that har-
bor an alternative allele for this locus, for instance ph1,
which is not functional, thus allowing homoeologous
chromosomes to pair and recombine [132]. These homoeo-
logous chromosomes include the ones from wheat, but also
chromosomes from species from the secondary and tertiary
gene pools of the cereal, during the process of gene intro-
gression, being this a powerfull mechanism for this ap-
proach [132]. Since other genes appear to contribuite on
this mechanism, other studies are being carried out to bet-
ter elucidate it.

Speed breeding
Crop breeding is, or, has been, a process which requires
considerable time, usualy several years - as for wheat - until
a new improved cultivar can be released. The current in-
creasing demand for food added to a number of other fac-
tors, such as the ongoing climate change, put pressure on
breeding to accelerate the process. Growing segregating
lines out of season, at different locations, and the double
haploid method have contribuited in this regard, but speed
breeding has come as a game-changer to accelerate the
plant improvement. It is a very recent approach which ul-
timately aims to shorten plant’s generation time, accelerat-
ing breeding and research programmes, in which wheat has
been protagonist, among few other crops [123]. It is basic-
ally based on photoperiod, light and temperature manipula-
tion (artificially), in growth chambers and glasshouses, and
allows one to achieve up to six generations per year - from
seed to seed, for spring wheat [36, 123]. The method not
only allows for generation advancing, but also for faster
phenotyping for numerous traits, such as flowering time,
plant height and disease resistance in wheat [36].

High-throughput phenotyping
The use of high-throughput phenotyping, aims to evaluate
several traits in a large number of plants over a short period
of time. This technique is comprised of several highly opti-
mized and automated steps, and emerged also in an at-
tempt to follow the performance achieved through

genotyping towards the increasing demands of breeding [2,
14, 24].
This can be done under controlled conditions, such as in

growth chambers or greenhouses, using plant-manipulating
robots and photographic cameras with temperature sen-
sors, CO2 meters and scales for weighing live plants [30,
92]. At field level, tractor-coupled or self-propelled plat-
forms, drones or even satellite imagery can perform the
tasks [19, 41, 55, 112]. After data collection, analysis is also
differentiated, requiring specific software, such as for image
processing [30, 55].

Final considerations and future perspectives
Agriculture has the challenge of meeting the increasing de-
mand for food by an ever growing world population, and
these days in an adverse scenario of climate change, re-
stricted availability of arable land and water and constant
evolution of pathogens, among other obstacles. Moreover,
the demand for food goes beyond quantity, as quality is also
required, especially regarding nutritional aspects. Bread
wheat and plant breeding have a crucial role on this task.
Breeding has been responsible for increasing wheat

yields and improving many other traits, such grain qual-
ity, resistance to biotic stresses, etc. However, the cereal
mean genetic gain has to be doubled in the next few de-
cades, in order to meet its global demand. Thus, efforts
in the development and implementation of improved
strategies must continuously take place in wheat breed-
ing programs.
Classical breeding, which is largelly based on crosses and

phenotypic selection has been the most used plant breeding
method around the globe for more than one century and is
still the main approach these days, responsible for the re-
lease of the largest number of cultivars. This approach will
still be applied as the main or even unique strategy for sev-
eral years to come, specially in developing countries. It will
be gradually replaced to a certain extent by improved
methods, again firstly in developed countries, next, in de-
veloping ones. Crosses may be replaced by direct insertion
of a gene of interest through gene editing and phenotypic
selection by GS. However, the complete extinction of the
classical breeding cannot be even conceived. Instead, com-
bined approaches will probably predominate in breeding
programs. Crosses followed by speed breeding practices
and high-throughput phenotyping for selection or GS is a
simple example of a combined scheme.
Gene editing and GS are the current cutting-edge ap-

proaches in plant breeding. Both can still be improved to
deliver more effective results, which will probably happen
within the next decade. However, the most important “im-
provement” required from these methods resides on the re-
duction of their costs, which is especially true for GS, as
genotyping is still considerably expensive. As science and
technology continue to move towards., it is difficult to even
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predict which advance will become available for breeders in
two or three decades.
Plant breeding has experienced innovations and revolu-

tions throughout its existence and wheat has been witness
to most, if not all, of these transformations and probably
will continue as an ally of the transformations to come.
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