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Abstract

Background: Chromatin accessibility is crucial for gene expression regulation in specific cells and in multiple
biological processes. Assay for Transposase Accessible Chromatin with high-throughput sequencing (ATAC-seq) is
an effective way to reveal chromatin accessibility at a genome-wide level. Through ATAC-seq, produced reads from
a small number of cells reflect accessible regions that correspond to nucleosome positioning and transcription
factor binding sites, due to probing hyperactive Tn5 transposase to DNA sequence.

Conclusion: In this review, we summarize both principle and features of ATAC-seq, highlight its applications in
basic and clinical research. ATAC-seq has generated comprehensive chromatin accessible maps, and is becoming a
powerful tool to understand dynamic gene expression regulation in stem cells, early embryos and tumors.
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Background
In eukaryotic cells, chromatin is a basic hereditary unit, which
consists of DNA, histone proteins and other genetic materials,
and regulates cell type-specific gene expression [1, 2]. Chro-
matin, as a dynamic nuclear structure, is transcriptionally ac-
tive in the interphase, and is relatively inactive in the
metaphase in a cell cycle [3]. Regulation of transcription is a
dynamic interaction between chromatin structure and recruit-
ment of numerous transcription factors to the enhancers, up-
stream activator sequences, and proximal promoter elements.
These transcription factors recruit RNA polymerase to the
core promoter for productive transcription [4].
In general, the regulatory elements selectively localize in

the accessible chromatin, which is crucial to transcriptional
regulation [5]. Although transcription factor occupancy is
not necessarily positively correlated with chromatin accessi-
bility [6], the maintenance of accessible chromatin configura-
tions requires binding of transcription factors to activate
target genes [7] (Fig. 1a). On the other hand, condensed
chromatin, known as closed chromatin, restricts binding of
transcription factors and transcriptional regulators to the
promoter and/or enhancer, which results in gene silencing
[8–10] (Fig. 1a). Moreover, chromatin accessibility is a sub-
stantial part of epigenetic regulation, which is marked by

DNA methylation and histone modification [11]. Environ-
mental pollution factors, such as polycyclic aromatic hydro-
carbons (PAHs), can affect DNA methylation [12, 13].
Therefore, chromatin accessibility, which can be modified by
some environmental and pathogenic factors, indicates posi-
tions of nucleosome and regulatory regions such as en-
hancers, reflects precise regulations of cell behaviors, and
implies dynamic physiological processes or disease condi-
tions [14–19].
Changes of the chromatin structure occur at specific ribo-

zyme accessibility sites that are associated with transcriptional
initiation or some specific DNA structures such as specific
hypersensitive sites [20]. These sites in DNA double strands
can be digested by DNA enzyme I (DNase I), which reflects
the accessibility of chromatin [21]. The hypersensitive sites,
mostly in the promoter region, are related to gene expression
[22]. To reveal accessible chromatin regions in real time and
at a genome-wide level, a method named Assay for Transpo-
sase Accessible Chromatin with high-throughput sequencing
(ATAC-seq) was developed and quickly applied in various
studies of gene expression. ATAC-seq utilizes the Tn5 trans-
posase and the transposable DNA as adapters, which allows
the adapter introduced into the accessible chromatin [19].
Here we summarize the principle of the ATAC-seq method,

highlight its usage in understanding basic transcription pro-
grams in specific cell types of humans and mice, and in reveal-
ing genetic reasoning of human diseases.
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Summary of the ATAC-seq method
Principle and procedures of ATAC-seq
ATAC-seq is an innovative epigenetic technology, which
is a method for mapping chromatin accessibility by
probing hyperactive Tn5 transposase to DNA sequence
at a genome-wide level [23] (Fig. 1b). DNA transposon is
a phenomenon that transfers DNA sequence from one
region of chromosome to another, which is assisted by
DNA transposase [24]. DNA transposon requires that the
chromatin at the insertion site is open, and the transpo-
sase carrying known DNA sequence tags needs to be arti-
ficially added to the nucleus, and then the open chromatin
can be identified by using labels of known sequences to
construct a library for sequencing [23]. At present, the
most commonly used transposase is the Tn5 transposase,
which can transpose in the accessible chromatin more
often than in the inaccessible chromatin. The Tn5 trans-
posase acts as a probe for measuring chromatin accessibil-
ity at the genome-wide level through the “cut and paste”
mechanism, and the transposon can simultaneously frag-
ment and tag the unprotected regions of DNA with se-
quencing adapters [25, 26] (Fig. 1b and Fig. 2).
The construction of ATAC-seq library consists of three

steps: nuclei preparation, transposition and amplification
[19] (Fig. 2). Firstly, tissues or cells for examination are sus-
pended into intact, homogenous single cells, which are sub-
sequently incubated in the lysis buffer to generate crude
nuclei (Fig. 2a). Secondly, the re-suspended nuclei are

incubated in the transposition reaction mix to yield DNA
fragment (Fig. 2b). Finally, transposed DNA is amplified to
generate libraries for sequencing (Fig. 2c). The reaction of
transposable enzyme to the chromatin of the sample is the
key step of the ATAC experiment [27].
Quality control of the ATAC-seq library should be per-

formed prior to sequencing to guarantee that the library con-
centration reaches the sequencing criteria. After library
sequencing, raw reads are collected through sequencing the
qualified library. After filtering data through sequencing data
quality assessment, clean reads are further obtained by evalu-
ating sequencing quality and summarizing data production
[18, 28, 29]. After removing adapter sequences and low qual-
ity reads, high-quality reads about 150 nucleotides (nts) in
length are processed for further analysis [30]. The peak call-
ing reads are mapped to the reference genome and accessible
chromatin regions, such as promoters, enhancers and insula-
tors [31–33]. A series of detailed analysis can be further con-
ducted, such as ascertaining distribution of reads across the
whole genome, determining distribution of the peak length,
functional analysis of genes with identified peaks, distribution
of peaks on functional elements of genes, and analysis of dif-
ferential peaks among samples [34, 35].

Advantages of ATAC-seq
The ATAC-seq method was first developed as an alternative
or supplement to sequencing of Micrococcal Nuclease sensi-
tive sites (MNase-seq), Formaldehyde-Assisted Isolation of

Fig. 1 The mechanism of identifying chromatin accessibility using the Tn5 transposase. a Open and closed status of chromatin. b When the
chromatin accessibility is increased, the Tn5 transposase transpose in the open chromatin more often than in the inaccessible chromatin. Then
the Tn5 transposase cuts the open chromatin and tags the adaptors to it to generate DNA fragments. The green symbol represents “adapter 1”
of the Tn5 transposase, while the red symbol represents “adapter 2” of theTn5 transposase
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Fig. 2 The major procedures of ATAC-seq. a Nuclei preparation: target cells are lysed in the lysis buffer to collect nuclei. b Transposase reaction:
adding the Tn5 transposase to tag the genomic DNA. The green symbol represents “adapter 1” of the Tn5 transposase, while the red symbol
represents “adapter 2” of theTn5 transposase. c PCR amplification: PCR primer-1 and -2 are used to generate library for sequencing. Primer-1 and
-2 are two universal PCR primers, which capture fragments with special length and add barcodes appropriate for the next generation sequencing

Table 1 Comparison of several sequencing methods

Methods MNase-seq DNase-seq FAIRE-seq ATAC-seq

Cell
status

Any state of cells Any state of cells Any state of cells Fresh cells or slowly cooled
cryopreserved cells

Principle MNase digests DNA which is
not protected by protein or
nucleosome on chromatin.

DNAase I preferentially
excises DNA sequence
without nucleosomes.

Separation of naked DNA based
on formaldehyde fixation and
phenol-chloroform extraction

Tn5 transpoase inserts the DNA
sequence without protein or
nucleosome protection and excises it.

Target
regions

Focus on nucleosome
localization

Accessible chromatin
regions, focusing on
transcription factor binding
sites

Accessible chromatin regions Accessible chromatin regions in
genome-wide, including transcription
factors, histone modifications.

Specific
features

1. A large number of cells as
input materials;
2. The quantity of enzyme
needs to be accurate;
3. Localization of the entire
nucleosome and inactive
regulatory region;
4. Detecting inactive regions by
degrading active regions;
5. Standard analysis requires
150-200 M reads.

1. A large number of cells
as input materials;
2. The process of sample
preparation is complicated;
3. The quantity of enzyme
needs to be accurate;
4. Standard analysis requires
20-50 M reads.

1. Low signal-to-noise ratio makes
data analysis difficult;
2. Results depend heavily on
formaldehyde fixation;
3. Standard analysis requires 20-50
M reads.

1. A lower number of cells as input
materials;
2. Standard analysis requires 20-50 M
reads through reducing sequencing
depth;
3. Conveniently obtain accessible
chromatin regions in genome-wide;
4. Mitochondrial data has an effect
on the accuracy of the results.

Time 2–3 days 2–3 days 3–4 days 2–3 h
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Regulatory Elements (FAIRE-seq), and Deoxyribonuclease
I hypersensitive sites sequencing (DNase-seq) [36–38]
(Table 1). For the MNase-seq and DNase-seq, when the
aggregation of DNA and histone is decreased, the unpro-
tected DNA is exposed and cut by DNA enzymes such as
MNase and DNase [39, 40]. The accessible chromatin re-
gions are recognized by sequencing the cleaved DNA frag-
ments and comparing the sequence reads to the reference
genome [39, 41, 42]. Drawbacks of these two methods are
time-consuming and poor repeatability [38, 43, 44]. The
FAIRE-seq uses formaldehyde immobilization, phenol
chloroform extraction and separation to obtain exposed
DNA. However, its background is high, and sequencing
signal-to-noise ratio is low [45–47].
Noteworthy, ATAC-seq has several advantages: first,

the transposase method can reduce experimental time to
2–3 h to achieve DNA fragmentation using a simple en-
zymatic reaction, which avoids the tedious conventional
DNA fragmentation, terminal repairing and adapter con-
nection reaction [38]. On the other hand, it usually takes
2–3 days to prepare the DNase-seq and MNase-seq ex-
periments, and 3–4 days for the FAIRE-seq experiment.
Second, the simplified experimental procedure reduces
the duration of sample preparation and decreases the
probability of errors, which significantly improves the
successful rate and repeatability of an experiment. Third,
the sample size is reduced by at least 1000 times, by de-
creasing from 1 to 50 million cells (FAIRE-seq) and 50
million cells (DNase-seq) to as low as about 500 cells
[38, 48–50]. When sample collection is challenging, this
advantage is particularly prominent. Fourth, ATAC-seq
can use paired-end sequencing technology to map nu-
cleosome positioning and occupancy [51]. Paired-end se-
quencing can sequence both ends of the DNA fragment,
making the alignment of reads mapping over repetitive
regions of the genome more accurate [52].
There are also some limitations of the ATAC-seq technol-

ogy. First, the Tn5 transposase simultaneously fragments and
tags unprotected regions of DNA with sequencing adapters
through the “cut and paste” mechanism. The adapter joints
at both ends of each DNA fragment are random, which leads
to a 50% probability of that the adapters at both ends of one
fragment are the same, generating half unusable fragments
for enrichment, amplification and sequencing [53]. Second,
studies have shown that “naked” DNA without nucleosomes
and transcription factors is easier to be cleaved by the Tn5
transposase [27]. Moreover, the Tn5 transposase tends to
bind and cleave at transcription factor binding regions, which
results in a loss of part of the transcription factor information
[54, 55]. All these drawbacks make ATAC-seq difficult to de-
tect the footprint of transcription factors, which can be used
to identify potential binding motifs of transcription factors.
Third, due to presence of mitochondrial DNA, data obtained
by ATAC-seq inevitably contains some mitochondrial reads.

Depending on the cell type, ATAC-seq data may contain
20–80% of mitochondrial sequencing reads [56].
To obtain pure nuclear genome reads and to reduce mito-

chondrial contamination, two methods can be used: using
the cell lysis buffer without detergent [19], and using the
clustered regularly interspaced short palindromic repeats
(CRISPR) technology [57–59]. The CRISPR/Cas9 technology
uses guide RNA (gRNA), which can target the mitochondrial
chromosome [60, 61]. By adding gRNA/Cas9 mix to pre-
pared sequencing library, gRNA can target mitochondrial
ribosomal DNA and Cas9 enzyme will cleavage the frag-
ments [58]. Compared to the original protocol, CRISPR tech-
nology results in lower mitochondrial reads, and more reads
in the nuclear genome [58, 60, 62].

Improvement of ATAC-seq
Since the ATAC-seq method was first developed, it has been
improved in order to adapt broader usage in research. Sin-
gle-cell ATAC-seq (scATAC-seq) provides the first insightful
examination of cell-to-cell variability in chromatin
organization, which can be achieved by a programmable
microfluidic device or combinatorial cellular indexing
scheme. The scATAC-seq can be used as a genome-wide ve-
hicle to map chromatin accessibility in all specific cell types
of an organism [50, 63–65]. Because it is still unclear exactly
how many open chromatin regions exist in a single cell, and
how chromatin accessibility differs between the two alleles in
an individual cell, whether the scATAC-seq does capture a
limited subset of open chromatin sites in single cells remains
unclear [66].
Moreover, Omni-ATAC-seq is another improved ATAC-

seq protocol to detect chromatin accessibility [56]. Based on
the standard ATAC-seq protocol, the Omni-ATAC-seq adds
a washing step using detergents after cell lysis to remove
mitochondria from the transposition reaction. The Omni-
ATAC-seq also uses phosphate-buffered saline (PBS) in the
transposition reaction to increase the signal-to-background
ratio and to reduce the background. Thus, the Omni-
ATAC-seq eliminates mitochondrial interference and re-
duces background noise to obtain high quality data of chro-
matin accessibility [56]. Moreover, the standard ATAC-seq
requires the transposition reaction to be performed on fresh
cells, and slowly cooled cryopreserved cells, but poorly on
snap-frozen cells [67]. The Omni-ATAC protocol can gener-
ate high-quality chromatin accessibility profiles from clinic-
ally relevant frozen tissues, such as brains [56].
ATAC-seq obtains the information of accessible chromatin

by breaking up cells, so it cannot describe the three-dimen-
sional structure of these accessible genomic regions. Assay
for Transposase Accessible Chromatin with Visualization
(ATAC-see) uses the same enzymatic methods as ATAC-
seq, and adds fluorescent clusters together with DNA
markers, which allows visualization of three-dimensional
immobilized nuclei [68].
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Applications
Applying ATAC-seq has advanced our understanding of
the machinery of gene expression regulation, such as
chromatin accessibility between different samples, nu-
cleosome positions, and genome-wide binding sites of
transcription factors [23, 69, 70]. It has provided mean-
ingful insight into revealing the landscape of chromo-
some accessibility, epigenetic modification of embryonic
development, epigenetic mechanism of tumorigenesis,
and potential disease biomarkers [61, 71–74]. Here, we
focus on applications of ATAC-seq in basic research and
clinical usage.

ATAC-seq in mapping the accessible chromatin landscape
Mapping the accessible chromatin landscape can obtain
information of spatial changes in chromatin structures
and transcription factors associated with gene expression
[59]. This information can reveal the network of relevant
transcription factors, and mechanisms of chromatin struc-
tural regulation that governs gene expression programs
[59]. For instance, in the human immune system, the ac-
cessible chromatin map of primary immune cells—T lym-
phocytes has been identified by using ATAC-seq [75]. A
significant change of chromatin accessibility has been
identified in regions near genes that are associated with B
cell activation, especially in Systemic Lupus Erythemato-
sus (SLE) patients [76].
In developmental biology, the lineage-specific open

chromatin regions and changes have been mapped using
ATAC-seq in epidermal differentiation, and in trophoblast
stem cell differentiation in placenta [77, 78]. In the devel-
oping heart, transcription factor TBX20 has been identi-
fied to bind to the conserved long-range enhancer Vcan,
and to co-regulate gene expression [79]. In the nervous
system, induced activation of neurons leads to instantan-
eous changes in the chromatin structure, especially in the
enhancer region [80]. Mapping the accessible chromatin
landscape of the developing cerebral cortex has identified
enhancers for FGFR2 and EOMES as important regulatory
players in cortical neurogenesis [81]. Moreover, ATAC-
seq has been used to obtain landscapes of accessible chro-
matin of endocrine cells and germ cells [32, 82–86].
In summary, applying ATAC-seq has generated compre-

hensive accessible chromatin landscapes of various cell types
in different tissues and organs, which has provided valuable
insights into the complexity of gene transcription.

ATAC-seq in embryonic development
Chromatin reprogramming actively occurs during early
embryonic development [61]. Studies have shown that
when chromatin reprogramming happens, regulatory fac-
tors that are associated with gene transcription and DNA
recombination are recruited by chromatin [87, 88], and
simultaneously the stability of nucleosome is altered [89].

During zygote gene activation, the activity of open chromatin
is increased, in parallel with activities of cis-regulatory factors,
which confirms that cis-regulatory elements play a significant
role in early development [90, 91]. ATAC-seq has been used,
together with the CRISP/Cas-9 technology, to detect mouse
preimplantation embryos [61]. Chromatin atlas of mouse
early embryos at different developmental stages have been
drawn by ATAC-seq, and motifs of essential transcription
factors for early development such as CTCF, NR5A2 and
TEAD4 have been identified [61].
Moreover, to study embryonic genome activation,

ATAC-seq has been used to detect transcriptome se-
quences [92]. These studies have shown that multiple
copies of DUX4 are activated by endogenous genes
KDM4E and ZSCAN4 that are expressed only in cleav-
age-stage of human embryos, which subsequently initi-
ates transition of embryonic stem cells to 2-cells stage
with totipotency [92–97].

ATAC-seq in cancer research
ATAC-seq is highly applicable to capture the tissue-specific
chromatin activity of regulatory regions in tumors [18, 75, 98–
100]. In Ras-dependent oncogenesis, 3778 over-activated regu-
latory regions are detected by using ATAC-seq [18, 101]. Re-
current mutations in RAD21 and STAG2 genes, which
encode the chromosome cohesion complex, have been shown
to be key elements in malignancy formation in acute myeloid
leukemia (AML) [98, 102–104]. Studies have shown that mu-
tant cohesin can increase chromatin accessibility of binding
sites for transcription factors such as ERG, GATA2 and
RUNX1, as detected by using ATAC-seq [105–108].
Moreover, ARID1A mutations usually occur in many

kinds of tumors, such as melanoma, glioblastoma and
other human malignancies [109–113], and ARID1B mu-
tations are usually found in neuroblastoma, hepatocellu-
lar carcinoma and breast invasive ductal carcinoma
[114–117]. Studies have shown that mutations of the
ARID1A and ARID1B complex are frequently associated
with tumorigenesis via altering promoter and enhancer
activities to modulate downstream gene expression
[118]. During the cell neoplastic transformation, down-
regulation of ARID1A leads to H3K27ac reduction at en-
hancer regions of downstream genes for ARID1A [119,
120]. ARID1A plays an important role in maintaining
chromatin accessibility at enhancers. In particular, the
expression of MET gene has been changed in ARID1A
mutant ovarian cancer cells, while ARID1B deletion dis-
plays the same effect only in the context of ARID1A mu-
tation, indicating an important role of ARID1A in
ovarian cancer cells [120].
Furthermore, p53 is a well-studied cancer suppressor

gene. The protein encoded by p53 has a role of suppress-
ing cancer under normal circumstances, and promoting
cancer development when mutations occur [121, 122].
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When DNA damage occurs, p53 initiates cell apoptosis by
regulating gene expression [123]. Studies have shown that
p53 can bind to the promoter and enhancer of a gene to
excel function [124, 125]. It has been found that p53 has a
prior binding to the enhancer in healthy fibroblasts de-
tected using ATAC-seq [126]. When DNA damage oc-
curs, chromatin is converted from inaccessible to
accessible status, and simultaneously, p53 gene is activated
to maintain genome stability [127].

Conclusion
ATAC-seq uses high-throughput sequencing approach
to identify all active regulatory sequences in the genome
using a small amount of cells. ATAC-seq has been
widely used in the acquisition of open chromatin regions
and transcription factor binding sites to reveal a real
time profile of chromatin accessibility. It has been rap-
idly applied and accepted to investigate gene expression
dynamics in stem cells, early embryos, and various tu-
mors, and even to detect potential biomarkers. Taking
advantage of optimization of ATAC-seq methodology to
simplify the experimental procedure and to reduce the
cost, ATAC-seq should soon have a broader usage in
basic research and clinical diagnostics.
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