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Abstract

Background: R is a multi-platform statistical software and an object oriented programming language. The package
archive network for R provides CRAN repository that features over 15,000 free open source packages, at the time of
writing this article (https://cran.r-project.org/web/packages, accessed in October 2019). The package ggroups is
introduced in this article. The purpose of this package is providing functions for checking and processing the
pedigree, calculation of the additive genetic relationship matrix and its inverse, which are used to study the
population structure and predicting the genetic merit of animals. Calculation of the dominance relationship matrix
and its inverse are also covered. A concept in animal breeding is genetic groups, which is about the inequality of the
average genetic merits for groups of unknown parents. The package provides functions for the calculation of the
matrix of genetic group contributions (Q). Calculating Q is computationally demanding, and depending on the size of
the pedigree and the number of genetic groups, it might not be feasible using personal computers. Therefore, a
computationally optimised function and its parallel processing alternative are provided in the package.

Results: Using sample data, outputs from different functions of the package were presented to illustrate a real
experience of working with the package.

Conclusions: The presented R package is a free and open source tool mainly for quantitative geneticists and
ecologists, who deal with pedigree data. It provides numerous functions for handling pedigree data, and calculating
various pedigree-based matrices. Some of the functions are computationally optimised for large-scale data.
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Background
Pedigree information provides the principles of the tra-
ditional as well as modern animal breeding today. It pro-
vides key information about inheritance, rate of kinship
between relatives, heritability and segregation of the phe-
notypic variance to genetic and non-genetic components,
inbreeding, effective population size, population struc-
ture, andmating patterns. Pedigree information fitted into
the pedigree relationshipmatrix (A) is used in the best lin-
ear unbiased prediction (BLUP) animal models [1]. BLUP
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is a mixed model equation system involving fixed and ran-
dom (including animal genetic) effects for the prediction
of animals’ breeding values. With genomic information
and genomic relationship matrices becoming available, A
is still needed in recent genetic evaluation models, such
as single-step genomic BLUP [2, 3] and single-step marker
effect model [4]. The inverse of A is needed in BLUP, and
matrix inversion is computationally challenging. Invert-
ing a matrix has a cubic computational cost relative to the
dimension of the matrix. Henderson [5] and Quaas [6]
invented amethod for indirect inversion ofA, with a linear
computational cost.
Another concept in the genetic evaluation of animals

is genetic groups (also called phantom parent groups).
Genetic groups are for taking into account for the fact
that unknown parents belong to different groups with dif-
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ferent averages of genetic merit, depending on the birth
year and the genetic background of the unknown parents.
The recommended grouping strategy [7] is based on the
4 pathways of selection (sire of sons, sire of daughters,
dam of sons, and dam of daughters), and the birth year
of the progeny of the unknown parent. Sufficient num-
ber of unknown parents are required in each group to
make accurate inferences about the group effects. There-
fore, subsequent yearsmight bemerged. For some species,
grouping might involve the breed and regions within a
country [7]. With international genetic trade of genetic
matrials, country of origin should be considered in form-
ing genetic groups (e.g., in dairy cattle populations open
to foreign genetic materials).
The aim of this study is to introduce an R pack-

age (ggroups [8]) for pedigree processing, obtain-
ing pedigree-based parameters and matrices (including
additive and dominance relationship matrices and their
inverses), the contribution of genetic groups to the genetic
merit of animals, and its correspondence matrix (Q).
There are a few R packages that have functions simi-

lar to some of the functions in ggroups. However, these
packages also provide different functionalities for differ-
ent user needs. Therefore, the aim is not putting these R
packages into comparison. Some packages are written in
C or C++ to increase the speed. R package ggroups is
written in R for better readability in a high-level language,
which can be more helpful for educational purposes.

Implementation and results
In this section, the implementation of ggroups
functions is explained with examples. This R pack-
age is available on CRAN (https://cran.r-project.
org) and can be installed in R, using the command
install.packages(“ggroups”). The convention
of package::function was used to address func-
tions from other R packages. For presenting most of the
functions, the example pedigree in Quaas [9] was used:

A a b

B A c

C d e

D B C

where, the columns correspond to animal, sire, and dam
ID. Unknown parents a, b, c, d, and e were belonging
to genetic groups, g1, g2, g2, g1, and g2, respectively.
The results were presented to show a real experience
of working with the package. Also, a pedigree of Mexi-
can Braunvieh cattle (57,341 animals, 2,746 sires, 27,015
dams, 3,925 missing sires, and 3,258 missing dams) with
8 genetic groups was used for performance (runtime)
testing. Where memory was a limitation (e.g., forming a
57,341 × 57,341 matrix), a subset of 3,000 animals (with

482 sires, 1,855 dams, 780 missing sires, and 704 missing
dams) from this pedigree was used. Runtimes were mea-
sured on an octa-core Intel(R) Core(TM) i7-8650U with
16 Gb of RAM (Sys.i7-8650U.16).

Pedigree renumbering
The first step of working with a pedigree involves con-
verting alpha-numeric identities to numeric identities
and order the pedigree. Most genetic evaluations soft-
wares require a numerical pedigree, where numeric IDs
need to be ascending from parent to progeny. Therefore,
it is important that the progeny ID is greater than the
parent ID. The main reason is that, to build A or A−1,
animals should be ordered by parents preceding progeny.
Function renum does renumbering and ordering the
pedigree, so that progeny’s ID is greater than parent’s
ID. Below, the example pedigree is used, with unknown
parents replaced with the corresponding genetic
groups:

> ped = data.frame(ID =c("g1","g2", "A",

"B", "C","D"), SIRE=c( 0, 0,"g1", "A",

"g1","B"), DAM =c( 0, 0,"g2","g2",

"g2","C"))

> renum(ped)

Found 4 generations

$newped

ID SIRE DAM

1 1 0 0

2 2 0 0

3 3 1 2

5 4 1 2

4 5 3 2

6 6 5 4

$xrf

ID newID

1 g1 1

2 g2 2

3 A 3

4 C 4

5 B 5

6 D 6

The output is a list of 2 data frames. The first is
the renumbered pedigree, and the second is the cross-
reference with columns corresponding to the original and
renumbered ID. To get each data.frame separately, use
renum(ped)$newped and renum(ped)$xrf.
Function orderPed from R package pedigree

[10] (pedigree::orderPed) and AGHmatrix:
:datatreat [11] order the pedigree, but do not do
renumbering. Applying pedigree::orderPed to the
ped object above shows that ped does not need ordering.

https://cran.r-project.org
https://cran.r-project.org
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> identical(pedigree::orderPed(ped),

1:nrow(ped))

[1] TRUE

Function AGHmatrix::datatreat returns three
lists for chronologically ordered individuals, their corre-
sponding sires, and corresponding dams.
> AGHmatrix::datatreat(ped)

Your data was chronologically organized

with success.

$sire

[1] 0 0 1 3 1 4

$dire

[1] 0 0 2 2 2 5

$ind.data

[1] "g1" "g2" "A" "B" "C" "D"

Loop(s) in the pedigree (an individual being ascendant
to itself ) would fail renum. Loops would appear among
duplicated IDs in the pedigree with different parent infor-
mation. If IDs are assigned so that parent ID is less than
progeny ID, a duplicated row for the animal causing loop
in the pedigree would show the opposite.

Pedigree check
Function pedcheck performs basic checks on numeric
pedigree. It is highly recommended to check the pedigree
object with this function, before proceeding to other func-
tions. The pedigree object is a data.frame with integer
columns corresponding to the ID of animal, sire, and dam.
Missing parents are set to 0. As an example, performing
pedcheck on a faulty pedigree:

> set.seed(127)

> faulty = data.frame(ID=c(1:50,NA,0,1:3),

SIRE=c(0,sample(c(0,10:25),53,

replace=TRUE),51), DAM=c(0,NA,52,

sample(c(0,20:35),

52,replace=TRUE)))

> pedcheck(faulty)

Found duplicates in the first column:

1 2 3

Found zeros in the first column, in the

following rows:

52

Found missing values in the following rows:

2 51

Found parents represented as both sire and

dam:

20 21 22 23 24 25

Found sires not available in the first

column:

51

Found dams not available in the first

column:

52

Found individuals with an ID not greater

than sire ID:

0 1 2 3 3 4 5 6 7 8 9 10 11 12 13 14 16

18 25

Found individuals with an ID not greater

than dam ID:

0 1 3 3 4 5 6 7 8 9 10 11 12 13 14 15 16

18 19 20 21 22 23 25 27

Pedigree is not sorted.

Found individuals

with no parent and no progeny. You may

consider excluding them:

1 2

All in and order the pedigree
Function gghead looks for possible parents missing in
the first column of the pedigree, inserts them to the head
of the pedigree, and orders the pedigree. Considering a
pedigree with all missing parents replaced with the cor-
responding genetic groups, this functions appends the
genetic groups to the head of the pedigree as the only IDs
with missing parents. For example,

> ped = data.frame(ID=3:6, SIRE=c(1,1,3,5),

DAM=c(2,2,2,4))

> (ped2 = gghead(ped))

ID SIRE DAM

1 1 0 0

2 2 0 0

3 3 1 2

4 4 1 2

5 5 3 2

6 6 5 4

In comparison with R package pedigree [10],
gghead function works similar to:
> test = pedigree::add.Inds(ped)

> test[pedigree::orderPed(test),]

ID SIRE DAM

1 1 NA NA

2 2 NA NA

3 3 1 2

4 4 1 2

5 5 3 2

6 6 5 4

Pedigree pruning
Pedigree pruning reduces memory usage and the time
to reach convergence in the genetic evaluation. Usually,
there are uninformative animals in the pedigree, which
do not contribute or pass any information from descen-
dants to ascendants. All those animals can be deleted
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from the pedigree for variance components estimation.
In BLUP, some of those animals might be needed. Even
though, they are uninformative, they might receive a pre-
dicted genetic merit from the information contributed
by their informative relatives. Function prueped has
two modes, strict and loose. The strict mode
is recommended for variance components estimation,
and the loose mode is recommended for BLUP. In the
strict mode, animals without progeny and phenotype
are deleted iteratively. Then, animals without known par-
ents and progeny (if any) are deleted from the pedigree.
In the loose mode, pedigree is upward extracted from
phenotyped animals to their founders, and then pedi-
gree is downward extracted from those founder animals.
This less strict pruning leaves non-phenotyped animals
with phenotyped relatives in the pedigree. Thus, they can
receive a predicted genetic merit from BLUP. To test this
function in both modes, consider animals 4, 5, and 6 are
phenotyped, and animals 7 and 8 added to ped2:

> pheno = 4:5

> ped3 = rbind(ped2, c(7,0,0), c(8,7,0))

> pruneped(ped3, pheno, mode="strict")

ID SIRE DAM

1 1 0 0

2 2 0 0

3 3 1 2

4 4 1 2

5 5 3 2

> pruneped(ped3, pheno, mode="loose")

ID SIRE DAM

1 1 0 0

2 2 0 0

3 3 1 2

4 4 1 2

5 5 3 2

6 6 5 4

Function pedigree::trimPed [10] can be used to
obtain the same output as function pruneped in the
strictmode:

> ped3[pedigree::trimPed(ped3, ped3$ID %in%

pheno),]

ID SIRE DAM

1 1 0 0

2 2 0 0

3 3 1 2

4 4 1 2

5 5 3 2

Additive relationship matrix
Functions buildA and tabA create matrix A from the
pedigree data.frame, in matrix and tabular-sparse for-
mats, respectively. Function buildA is faster, but tabA

Table 1 Runtimea of different functions with two pedigree data

package::function Timeb Timec

ggroups::tabA – 13m:56s

pedigree::makeA – 37s

ggroups::buildA – 2s

pedigreemm::getA – 1s

AGHmatrix::Amatrix – 1s

pedigree::calcInbreeding 2s 1s

pedigreemm::inbreeding 1s 1s

ggroups::tabAinv 5m:28s 1s

pedigree::makeAinv 2s 1s

pedigreemm::getAInv – 1s

ggroups::qmatL – 2s

ggroups::qmatL 7m:27s 4s

ggroups::qmatXL 3m:31s 5s

nadiv::ggcontrib – 1s

ggroups::tabD – 39s

ggroups::buildD – 2m

AGHmatrix::Amatrixd – 1m:24s

ggroups::rg 41se 4se

ggroups::inb 35se 3se

ggroups::tabDinv – 1m:29s

ggroups::tab2mat – 31sf

ggroups::mat2tab – 4sf

aMeasured on an octa-core Intel(R) Core(TM) i7-8650U with 16 Gb of RAM, and
runtimes shorter than 1s are presented as 1s
bA pedigree of 57,341 Mexican Braunvieh cattle (2,746 sires, 27,015 dams, and 8
genetic groups)
cA subset of 3,000 animals (482 sires, and 1,855 dams) from b

ddominance=TRUE
e100 reiterations on random samples
fFor the additive genetic relationship matrix

is more memory-efficient (Table 1). Usually, relationship
matrices and their inverses are saved in a tabular-sparse
format. It reduces the memory usage and the size of the
output file, as only the non-zero upper/lower triangular
elements are saved. Considering the renumbered pedigree
without genetic groups:

> ped4 = data.frame(ID=3:6, SIRE=c(0,0,3,5),

DAM=c(0,0,0,4))

> buildA(ped4)

3 4 5 6

3 1.00 0.0 0.5 0.25

4 0.00 1.0 0.0 0.50

5 0.50 0.0 1.0 0.50

6 0.25 0.5 0.5 1.00

>

> tabA(ped4)

Found 3 generations

ID1 ID2 a
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1 3 3 1.00

3 3 5 0.50

5 3 6 0.25

2 4 4 1.00

6 4 6 0.50

4 5 5 1.00

7 5 6 0.50

8 6 6 1.00

Functions pedigree::makeA [10], pedigreemm:
:getA [12] and AGHmatrix::Amatrix [11] also create
matrix A.

> pedigree::makeA(ped4, which=rep(TRUE,

nrow(ped4)))

[1] TRUE

> read.table("A.txt")

V1 V2 V3

1 1 1 1.00

2 2 1 0.00

3 2 2 1.00

4 3 1 0.50

5 3 2 0.00

6 3 3 1.00

7 4 1 0.25

8 4 2 0.50

9 4 3 0.50

10 4 4 1.00

>

> ped4mm = pedigreemm::pedigree(label=ped4

$ID, sire=ped4$SIRE, dam=ped4$DAM)

> pedigreemm::getA(ped4mm)

4 x 4 sparse Matrix of class "dsCMatrix"

3 4 5 6

3 1.00 . 0.5 0.25

4 . 1.0 . 0.50

5 0.50 . 1.0 0.50

6 0.25 0.5 0.5 1.00

>

> AGHmatrix::Amatrix(ped4)

Verifying conflicting data...

Organizing data...

Your data was chronologically organized

with success.

Constructing matrix A using ploidy = 2

Completed! Time = 0 minutes

3 4 5 6

3 1.00 0.0 0.5 0.25

4 0.00 1.0 0.0 0.50

5 0.50 0.0 1.0 0.50

6 0.25 0.5 0.5 1.00

Please note that the first two columns in A.txt writ-
ten by pedigree::makeA are the order of animals in
the pedigree, not animal IDs. Table 1 provides runtime

measures for buildA, tabA, pedigree::makeA,
pedigreemm::getA, and AGHmatrix::Amatrix.

Relationship coefficient
Whereas, functions buildA and tabA give relation-
ship coefficients between all pairs of individuals, using
these functions is computationally expensive (mem-
ory for buildA and runtime for tabA) if only the
relationship coefficient between a pair of individuals is
required, especially in a large pedigree. Instead, function
rg can be used. For example, to get the relationship coef-
ficient between individuals 3 and 6 in ped4, rg(ped4,
3, 6) results in: [1] 0.25. The same result can be
obtained using function pedigree::makeA, but with
less convenience.

> pedigree::makeA(ped4, which=c(ped4$ID

%in% c(3,6)))

[1] TRUE

> A = read.table("A.txt")

> A[A[,1]!=A[,2],]

V1 V2 V3

2 4 1 0.25

Calculating relationship coefficient between a pair of
individuals using rg, information from their common
parents are used only. Runtime of 100 reiterations of rg
on random pairs of individuals is provided in Table 1.

Inbreeding coefficient
If the inbreeding coefficient of an individual is of inter-
est, using functions buildA and tabA is computationally
expensive, especially in a large pedigree. Instead, function
inb can be used. For example, to calculate the inbreed-
ing coefficient of individual 6 in ped2, inb(ped2,
6) results in: [1] 0.25. Calculating inbreeding coeffi-
cient for an individual, information from parents’ com-
mon ancestors are used only. Runtime of 100 reiterations
of inb on randomly chosen individuals is provided in
Table 1.
Using package ggroups [8], there are 3 ways of obtain-

ing inbreeding coefficients for all animals in the pedigree:

inbr = c(); for(i in ped2$ID) inbr = c(inbr,

inb(ped2, i))

inbr = diag(buildA(ped2)) - 1

inbr = tabA(ped2); inbr = inbr[inbr[,1]

==inbr[,2],]$a - 1

Functions pedigree::calcInbreeding [10]
and pedigreemm::inbreeding [12] use fast
and efficient algorithms [13] to compute inbreed-
ing coefficients in large populations. Run time
measures of pedigree::calcInbreeding and
pedigreemm::inbreeding are provided in Table 1.
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Inverse of the additive relationship matrix
Function tabAinv buildsA−1 in a tabular-sparse format.
Compared to matrix data, handling tabular data takes a
longer runtime. However, it is more memory-efficient for
large pedigree. The pedigree object and inbreeding coeffi-
cients are required for tabAinv. None of the animals in
ped4 were inbred. For example,
> inbr = rep(0, 4)

> (Ai = tabAinv(ped4, inbr))

ID1 ID2 ai

1 3 3 1.3333333

2 4 4 1.5000000

3 3 5 -0.6666667

4 4 5 0.5000000

5 5 5 1.8333333

6 4 6 -1.0000000

7 5 6 -1.0000000

8 6 6 2.0000000

Function tabAinv performs similar to functions
pedigree::makeAinv [10] and pedigreemm::
getAInv [12].
> pedigree::makeAinv(ped4)

[1] TRUE

> read.table("Ainv.txt")

V1 V2 V3

1 1 1 1.333330

2 2 2 1.500000

3 3 1 -0.666667

4 3 2 0.500000

5 3 3 1.833330

6 4 2 -1.000000

7 4 3 -1.000000

8 4 4 2.000000

>

> pedigreemm::getAInv(ped4mm)

4 x 4 Matrix of class "dgeMatrix"

3 4 5 6

3 1.3333333 0.0 -0.6666667 0

4 0.0000000 1.5 0.5000000 -1

5 -0.6666667 0.5 1.8333333 -1

6 0.0000000 -1.0 -1.0000000 2

Please note that the first two columns in Ainv.txt
written by pedigree::makeAinv are animal orders in
the pedigree, not animal IDs. Table 1 provides runtime
measures for tabAinv, pedigree::makeAinv, and
pedigreemm::getAInv.

Tabular to matrix and vice versa
Function tab2mat converts matrices from tabular-
sparse format to matrix format. For example, A−1 cre-
ated in the previous example is converted to matrix
format:

> tab2mat(Ai)

3 4 5 6

3 1.3333333 0.0 -0.6666667 0

4 0.0000000 1.5 0.5000000 -1

5 -0.6666667 0.5 1.8333333 -1

6 0.0000000 -1.0 -1.0000000 2

Function mat2tab converts matrices from matrix
format to tabular-sparse format. For example, mat2tab
(tab2mat(tabA(ped4))) returns tabA(ped4).
Runtime records for converting a pedigree relationship
matrix to tabular-sparse format (mat2tab) and vice
versa (tab2mat) are provided in Table 1.
R package reshape2 [14] is a popular tool used for

reshaping and transforming data. For example, it can
be simply used for transforming a matrix to a tabular
data.frame:

> (test = matrix(0:8, nrow=3,

+ dimnames=list(letters[1:3], letters

[1:3])))

a b c

a 0 3 6

b 1 4 7

c 2 5 8

> (mtest = reshape2::melt(test))

Var1 Var2 value

1 a a 0

2 b a 1

3 c a 2

4 a b 3

5 b b 4

6 c b 5

7 a c 6

8 b c 7

9 c c 8

or to transform a tabular data.frame to a matrix:
> reshape2::dcast(mtest, Var1 ~ Var2)

Var1 a b c

1 a 0 3 6

2 b 1 4 7

3 c 2 5 8

Unlike reshape2::melt and reshape2::dcast
functions used above, mat2tab and tab2mat func-
tions are specifically designed for symmetric matrices and
tabular-sparse data, which reduces the number of rows
in the data.frame to be read/written and kept in the
memory.

Genetic group contributions matrix
Function qmat creates matrix Q, which is the matrix
of genetic group contributions to animals. According to
Quaas [9], Q = (I − P)−1PbQb, where (I − P)−1Pb is
equal to the genetic relationship matrix between animals
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(rows) and unknown parents (columns), and Qb is the
incidence matrix of unknown parents (rows) and genetic
groups (columns). Function qmatL is the computation-
ally optimised version of qmat. It calculates each column
of Q (each genetic group) separately, by calculating rela-
tionship coefficients between the genetic group of interest
with animals that receive contribution from the genetic
group (excluding missing parents, which receive full con-
tribution).
The input pedigree should contain genetic groups (not

unknown parents) as the only IDs with unknown parents,
similar to the output from ped2 = gghead(ped). For
example,

> qmat(ped2)

Found 2 genetic groups

1 2

3 0.500 0.500

4 0.500 0.500

5 0.250 0.750

6 0.375 0.625

Function nadiv::ggcontrib [15] also returns
matrix Q for pedigree and genetic groups. Using the
Mexican Braunvieh pedigree on Sys.i7-8650U.16, both
qmat and nadiv::ggcontrib aborted with "Error:
cannot allocate vector of size 25.6 Gb"
message. Function qmatL could even return Q on a
machine with 4 Gb RAM (not all of it available). Func-
tions qmat and nadiv::ggcontrib were tested on
a server with 526 Gb of RAM. Function qmat returned
Q after 17m:51s, and function nadiv::ggcontrib
aborted with the following message:
*** caught segfault *** address

0x7eef5090b890, cause ’memory not mapped’

With the pedigree subset of 3,000 animals, function
nadiv::ggcontrib successfully returned matrix Q
on Sys.i7-8650U.16. Runtimes of qmat, qmatL, and
nadiv::ggcontrib are provided in Table 1.

Parallel computation of genetic group contributionsmatrix
In order to further speed up the calculation of Q, the
process can take advantage of multicore processors
and parallel computing. Function qmatXL is the paral-
lelised version of qmatL. It requires a pedigree object
as described for ped2, and the number of user-defined
computational nodes. If the number of user-defined
nodes was greater than the number of genetic groups, the
number of genetic groups is considered for the number of
nodes. This function requires R packages doParallel
[16] and foreach [17], otherwise, an on-screen message
will notify the user to install doParallel. Package
foreach is a dependency for package doParallel.
Thus, installing doParallel with its dependen-
cies (i.e., install.packages("doParallel",

dependencies=TRUE)) would automatically install
foreach. The command for testing qmatXL with ped2
and 2 nodes is: qmatXL(ped2, 2).
Table 1 provides runtime records for qmatXL. The ben-

efit from parallel processing is expected to increase with
the greater number of genetic groups and computational
nodes. For small pedigree, qmat and qmatL are fast
enough that parallel processing from qmatXL shows no
benefit (Table 1). This might be due to a small parallel
processing overhead.

Summing genetic merits and genetic group contributions
There are two main alternatives of introducing genetic
groups in BLUP [9]:
⎡
⎣

X′R−1X X′R−1Z X′R−1ZQ
Z′R−1X Z′R−1Z + G−1 Z′R−1ZQ

Q′Z′R−1X Q′Z′R−1Z Q′Z′R−1ZQ

⎤
⎦

⎡
⎣

b̂
û
ĝ

⎤
⎦ =

⎡
⎣

X′R−1y
Z′R−1y

Q′Z′R−1y

⎤
⎦ ,

(1)

where b̂, û and ĝ are the vectors for the predictions of
fixed, genetic merit, and genetic group effects, respec-
tively, with the corresponding matrices X, Z, and ZQ.
Matrix R, and vector y correspond to the residuals and
phenotypes. Using Quaas and Pollak [18] transformation,
the equation system is transformed to:
⎡
⎣

X′R−1X X′R−1Z 0
Z′R−1X Z′R−1Z + G−1 −G−1Q

0 −Q′G−1 Q′G−1Q

⎤
⎦

⎡
⎣

b̂
Qĝ + û

ĝ

⎤
⎦ =

⎡
⎣

X′R−1y
Z′R−1y

0

⎤
⎦ .

(2)

If the genetic evaluation software applies Eq. (1) (e.g.,
MTDFREML [19]), function Qgpu can be used to obtain
Qĝ + û. Function Qgpu requires 2 arguments, the Q
matrix and a data.frame with 2 columns for IDs and
solutions [ĝ, û], respectively. The order of solutions must
be the order of columns and then the order of rows in Q.
For example,

> ghat = c(0.1, -0.2)

> uhat = seq(-1.5, 1.5, 1)

> sol = data.frame(ID=1:6, EBV=c(ghat, uhat))

> Qgpu(Q, sol)

[,1]

3 -1.5500

4 -0.5500

5 0.3750

6 1.4125

Dominance relationship matrix
Whereas, additive genetic effects are inherited directly
through individuals, inheritance of dominance effects are
through pairs of mating individuals [20]. Hoeschele and
VanRaden [20] defined pedigree-based dominance rela-
tionships by partitioning dominance effects into sire ×
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dam subclass effects and within subclass deviations from
within subclass average of dominance effects.
Functions buildD and tabD create matrix D from the

pedigree data.frame, in matrix and tabular-sparse for-
mats, respectively. Calculations are done for animals with
both parents known. Other animals would only receive a
diagonal value of 1. Below, functions buildD and tabD
are shown in practice.

> buildD(ped2, buildA(ped2))

1 2 3 4 5 6

1 1 0 0.000 0.000 0.0000 0.0000

2 0 1 0.000 0.000 0.0000 0.0000

3 0 0 1.000 0.250 0.1250 0.1250

4 0 0 0.250 1.000 0.1250 0.1250

5 0 0 0.125 0.125 1.0000 0.1875

6 0 0 0.125 0.125 0.1875 1.0000

>

> tabD(ped2, tabA(ped2))

Found 4 generations

ID1 ID2 d

7 1 1 1.0000

8 2 2 1.0000

9 3 3 1.0000

1 3 4 0.2500

2 3 5 0.1250

4 3 6 0.1250

10 4 4 1.0000

3 4 5 0.1250

5 4 6 0.1250

11 5 5 1.0000

6 5 6 0.1875

12 6 6 1.0000

Function AGHmatrix::Amatrix [11] has a function-
ality similar to buildD.
> AGHmatrix::Amatrix(ped2, dominance = TRUE)

Verifying conflicting data...

Organizing data...

Your data was chronologically organized

with success.

Constructing matrix A using ploidy = 2

Constructing dominance relationship matrix

Completed! Time = 0 minutes

1 2 3 4 5 6

1 1 0 0.000 0.000 0.0000 0.0000

2 0 1 0.000 0.000 0.0000 0.0000

3 0 0 1.000 0.250 0.1250 0.1250

4 0 0 0.250 1.000 0.1250 0.1250

5 0 0 0.125 0.125 1.0000 0.1875

6 0 0 0.125 0.125 0.1875 1.0000

Runtime records of buildD, tabD, and
AGHmatrix::Amatrix(dominance=TRUE) are
provided in Table 1.

Inverse of the dominance relationship matrix
Function tabDinv is used for obtainingD−1 in a tabular-
sparse format from a pedigree object. For example,
> tabDinv(ped2, tabA(ped2))

Found 4 generations

ID1 ID2 val

1 1 1 1.00000000

2 2 2 1.00000000

3 3 3 1.08424908

4 3 4 -0.24908425

6 3 5 -0.08791209

9 3 6 -0.08791209

5 4 4 1.08424908

7 4 5 -0.08791209

10 4 6 -0.08791209

8 5 5 1.05494505

11 5 6 -0.17582418

12 6 6 1.05494505

Runtime record of tabDinv is provided in Table 1.

Other functions
There are other functions included in package ggroups,
and possibly more functions will be added in the future.
Some of the existing functions are offspring, pedup,
and peddown. Function offspring reports the num-
ber of descendants from an individual, in each generation
following that individual. Providing a list of animals such
as the list of phenotyped or genotyped animals, the num-
ber of descendants from that list per generation is also
provided. Function pedup extracts the pedigree for one
or a group of individuals, by tracing their ancestors, for
a defined or maximum possible number of generations.
Similarly, function peddown extracts the pedigree for a
group of individuals, by tracing their descendants down
the pedigree.

Conclusions
The R package ggroups is a useful, free and open source
tool for animal breeders, researchers, and students, who
work with pedigree data and R. It provides functions
for the most important tasks related to working with
pedigree, including creating the additive genetic relation-
ship matrix and its inverse, and the matrix of genetic
group contributions. The advantage of this package over
other packages that also calculate the matrix of genetic
group contributions, is that it has computationally opti-
mised functions for large pedigree, which also can take
advantage of multicore processors. In addition, R pack-
age ggroups provides other helpful functions such as
functions for pedigree checking, renumbering and extrac-
tion, forming the dominance relationship matrix and its
inverse, and converting tabular-sparse data to matrix, and
vice versa. The results showed that functions dealing with
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data in matrix format are faster than functions deal-
ing with data in tabular-sparse format. However, where
memory of most personal computers fail forming large
matrices for large pedigree, dealing with tabular-sparse
data reduces the memory demand.

Availability and requirements
• Project name: R package ggroups
• Project home page: https://cran.r-project.org/

package=ggroups
• Operating system(s): Platform independent
• Programming language: R
• Other requirements: doParallel (≥1.0.14) and

foreach (≥1.4.4) are required for function qmatXL.
• License: GPL-3
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