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Abstract 

Background: Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease affecting people’s 
health worldwide. Exploring the potential biomarkers and dynamic networks during NAFLD progression is urgently 
important.

Material and methods: Differentially expressed genes (DEGs) in obesity, NAFL and NASH were screened from 
GSE126848 and GSE130970, respectively. Gene set enrichment analysis of DEGs was conducted to reveal the Gene 
Ontology (GO) biological process in each period. Dynamic molecular networks were constructed by DyNet to illus-
trate the common and distinct progression of health- or obesity-derived NAFLD. The dynamic co-expression modu-
lar analysis was carried out by CEMiTool to elucidate the key modulators, networks, and enriched pathways during 
NAFLD.

Results: A total of 453 DEGs were filtered from obesity, NAFL and NASH periods. Function annotation showed that 
health-NAFLD sequence was mainly associated with dysfunction of metabolic syndrome pathways, while obesity-
NAFLD sequence exhibited dysregulation of Cell cycle and Cellular senescence pathways. Nine nodes including 
COL3A1, CXCL9, CYCS, CXCL10, THY1, COL1A2, SAA1, CDKN1A, and JUN in the dynamic networks were commonly 
identified in health- and obesity-derived NAFLD. Moreover, CYCS, whose role is unknown in NAFLD, possessed the 
highest correlation with NAFLD activity score, lobular inflammation grade, and the cytological ballooning grade. 
Dynamic co-expression modular analysis showed that module 4 was activated in NAFL and NASH, while module 3 
was inhibited at NAFLD stages. Module 3 was negatively correlated with CXCL10, and module 4 was positively cor-
related with COL1A2 and THY1.

Conclusion: Dynamic network analysis and dynamic gene co-expression modular analysis identified a nine-gene 
signature as the potential key regulator in NAFLD progression, which provided comprehensive regulatory mecha-
nisms underlying NAFLD progression.
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Background
Nonalcoholic fatty liver disease (NAFLD) is regarded 
as one of the most common chronic liver diseases. 
NAFLD is associated with obesity, and ranges from sim-
ple hepatic steatosis (nonalcoholic fatty liver [NAFL]) to 

nonalcoholic steatohepatitis (NASH). Some patients with 
NAFLD eventually developed cirrhosis, fibrosis, or hepa-
tocellular carcinoma [1]. Since the liver is required for 
the glucose metabolism process and energy homeostasis, 
NAFLD also acts as a high-risk factor for metabolic dis-
eases such as type 2 diabetes. A recent study confirmed 
that NAFLD is closely related to high mortality, especially 
liver disease-specific and diabetes-specific deaths [2]. 
Due to the high prevalence, high mortality, and serious 
complications, exploring the potential biomarkers and 

Open Access

*Correspondence:  songqiangyao888@163.com
1 Department of Pharmacy, Zhejiang Medical & Health Group Hangzhou 
Hospital, No.1 Banshan Road, Kangjian nong, Hangzhou 310022, China
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s41065-021-00196-8&domain=pdf


Page 2 of 14Zheng et al. Hereditas          (2021) 158:31 

elucidating the dynamic networks involved in NAFLD 
are becoming urgently important.

NAFLD is mainly caused by obesity. Lifestyle interven-
tion such as weight loss with diet or surgery is a primary 
therapy for NAFLD [3]. Liver transplantation has been 
proven to be an efficient method to treat NAFLD espe-
cially at the end stage [4], but the shortage of the donor’s 
liver and surgical complications limit the therapy. The 
treatment of NAFLD is to prevent NAFL from develop-
ing to NASH, which is highly associated with liver cirrho-
sis, fibrosis or serious hepatic complications. However, 
there is no specific drug approved for NAFLD until now. 
Moreover, NAFLD is increasingly being identified in 
non-obese patients. The common and distinct mecha-
nisms involved in the non-obesity and obesity-derived 
NAFLD has not been fully elucidated. Expression profil-
ing by high throughput sequencing has been a powerful 
tool to reveal key factors and pathways in NAFLD liver, 
and some studies have focused on the different stages of 
NAFLD [5, 6]. However, the dynamic alterations in key 
genes and co-expression networks were not fully eluci-
dated during NAFLD progression. Searching key regula-
tors, functional networks, and pathways in obesity, NAFL 
and NASH would be helpful to prevent and delay the 
development of NAFLD.

In this work, we focused on the dynamic gene land-
scape and pathways during NAFLD progression. Con-
sistently changed genes were screened from GSE126848 
[5] and GSE130970 [7]. Dynamic molecular networks 
and dynamic co-expression modular analysis were con-
structed to illustrate the key modulators, networks, and 
enriched pathways during NAFLD. The results would 
offer new clinical biomarkers for different stages of 
NAFLD, and provide potential drug targets for NAFLD 
treatment.

Material and methods
Microarray data
The flow diagram of this study was illustrated in supple-
mentary figure  1. The search strategy is “(NAFLD) OR 
(nonalcoholic fatty liver disease)” in GEO (http:// www. 
ncbi. nlm. nih. gov/ geo/). The criteria are: 1. The dataset 
is an RNA sequencing dataset; 2. The dataset has more 
than 10 samples; 3. The dataset contains healthy, NAFL 
and NASH subjects. Finally, two datasets GSE126848 and 
GSE130970 meet the criteria. The RNA sequencing data-
set GSE126848 was based on platform GPL18573 [5]. The 
liver biopsies comprised 14 healthy donors, 12 obese, 15 
NAFL and 16 NASH patients. The dataset GSE130970 
was based on platform GPL16791 [7]. According to 
the NIDDK NASH CRN criteria, 26 samples with the 
NAFLD activity score (NAS) ≥ 5 were regarded as NASH, 
10 samples with steatosis and NAS < 3 were considered 

as NAFL, 4 samples with NAS = 0 was chosen as normal 
tissues. Due to the limited histological information, the 
liver histology of the rest 36 samples could not be defined 
and these samples were not enrolled in our analysis.

Data processing and identification of DEGs
Basing on R (version 3.5.1), rtracklayer and Summarize-
dExperiment packages were applied to annotate the raw 
data using the human genome reference GRCh38 [8]. The 
edgeR package was applied to conduct the background 
correction, normalization and log2-counts-per-mil-
lion transformation. Empirical Bayes method depend-
ing on the limma package was performed to identify 
DEGs of GSE126848 and GSE130970. The thresholds for 
DEGs filtration were set as |log2 fold change (FC)|≥ 1 
and P value < 0.05. Since only GSE126848 contained 
the obese samples, the DEGs in obesity were filtered 
from GSE126848. Common DEGs in NAFL and NASH 
were screened by the intersection of GSE126848 and 
GSE130970. GSE126848 contained all of the three disease 
types, therefore, the expression profiles of these DEGs at 
different stages were then extracted from GSE126848 for 
the dynamic expression pattern and gene set enrichment 
analysis.

Gene set enrichment analysis of DEGs
Gene set enrichment analysis (GSEA) of the DEGs was 
conducted using gseaGO function within the R package 
clusterProfiler [9]. The permutation number was set as 
1500. The org.Hs.eg.db package was applied to map gene 
identifiers. Ridgeline plots were performed using ggridges 
and ggplot2 packages. Gene set with a P value < 0.05 was 
considered to be significant.

Analysis of DEGs expression pattern during NAFLD 
progression
The union of DEGs in obesity, NAFL and NASH was 
input and normalized by Short Time-series Expression 
Miner (STEM) to explain the NAFLD progression. STEM 
is a software designed for clustering, comparing, and dis-
playing gene expression data from time-course experi-
ments [10]. The maximum number of expression models 
was set as 60, and P values were adjusted using FDR. The 
other parameters were set as default. Clusters with colors 
mean statistically significant numbers of genes enriched.

Analysis of dynamic molecular interaction networks 
during NAFLD progression
To analysis the key genes involved in the NAFLD pro-
gression, dynamic molecular interaction networks were 
constructed using DyNet (1.0.0) application in Cytoscape 
(3.6.1). DEGs were input into the STRING database to 
construct the protein–protein interaction (PPI) network, 
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and DyNet [11] was applied to analyze the most ‘rewired’ 
nodes across dynamic network states. To analyze the 
heterogeneous mechanism of NAFLD, the rewired 
nodes from obese and non-obese NALFD progression 
sequences were intersected and subsequently enriched 
by KEGG within the R package clusterProfiler [9]. Node 
degree variance was calculated by DyNet and was dis-
played as Dn-Score.

Dynamic co‑expression modular analysis
The CEMiTool is a comprehensive R package that 
allowed the users to identify co-expressed gene modules, 
hubs, and determine significant module functions [12]. 
The R packages WGCNA and CEMiTool were combined 
to calculate the correlation between key nodes identified 
above and gene co-expression modules. A P < 0.05 was 
defined as significant correlation. Then, files including 
GO gene sets (C5) from MSigDB 7.0 and human pro-
tein–protein interaction (PPI) from the mentha database 

were regarded as enrichment and PPI background. The 
association of module activity was determined using 
fgsea package. The biological functions related to mod-
ules were annotated using the over representation analy-
sis (ORA).

Results
Function annotation of DEGs in obese, NAFL and NASH 
patients
GEO datasets GSE130970 and GSE126848 were 
enrolled in our study, and the clinicopathologi-
cal features of patients in two datasets were pre-
sented in Table  1. DEGs in NAFL and NASH were 
firstly screened by the intersection of GSE126848 
and GSE130970, respectively. As a result, 31 upregu-
lated DEGs and 8 downregulated DEGs were filtered 
from NAFL samples, while 99 upregulated DEGs and 
23 downregulated DEGs were screened from NASH 
subjects (Fig.  1A). Moreover, 159 upregulated DEGs 

Table 1 Clinicopathological features of patients in different datasets

Variables GSE130970 GSE126848

NT NAFL NASH NT Obesity NAFL NASH

Age (years)

 Mean 53 50.5 53.9 / / / /

Gender

 Male 1 5 9 14 12 9 12

 Female 3 5 17 0 0 6 4

Lobular inflammation grade

 0 4 3 0 / / / /

 1 0 7 18 / / / /

 2 0 0 8 / / / /

Cytological ballooning grade

 0 4 10 1 / / / /

 1 0 0 7 / / / /

 2 0 0 18 / / / /

Steatosis grade

 0 4 0 0 / / / /

 1 0 9 2 / / / /

 2 0 1 13 / / / /

 3 0 0 11 / / / /

Fibrosis stage

 0 4 7 1 / / / /

 1 0 3 12 / / / /

 2 0 0 4 / / / /

 3 0 0 8 / / / /

 4 0 0 1 / / / /

NAFLD activity score

 NAS = 0 4 0 0 / / / /

 0 < NAS < 3 0 10 0 / / / /

 NAS ≥ 5 0 0 26 / / / /
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and 191 downregulated DEGs were found in obese 
patients. The Venn diagram showed that 8 upregulated 
DEGs (including TP53I3, FNDC5, INHBE, SERPINE1, 
PRKCE, ACSL4, IP6K3 and CXCL10), and 4 downregu-
lated DEGs (including B3GAT1, P4HA1, IGFBP2 and 
GPR88) were shared by all three groups (Fig. 1B).

In order to elucidate the functional gene sets involved 
in the process of obesity, NAFL and NASH, we conducted 
the GO biological process enrichment using DEGs from 
each period, respectively. In the obesity group, the top 2 
upregulated gene sets ranked by normalized enrichment 
score (NES) were blood coagulation, hemostasis, and the 
top 2 downregulated gene sets were epidermis develop-
ment, cornification (Fig. 1C). In the NAFL group, the top 
2 upregulated gene sets were cell cycle phase transition, 
mitotic cell cycle process, and the top 2 downregulated 
gene sets were actin-myosin filament sliding, digestion 
(Fig. 1D). For DEGs in NASH, the top 2 upregulated gene 
sets were DNA replication, cell cycle process, and the top 
2 downregulated gene sets were antimicrobial humoral 
response, digestion (Fig. 1E).

Dynamic landscape of DEGs during NAFLD progression
To further explore the markers during NAFLD progress, 
dynamic profiles of all DEGs in Fig.  1B were analyzed. 
Altogether 60 expression trends were determined in 
our study. Here we summarized four featured expres-
sion trends among these profiles, and the top five DEGs 
ranked by expression fold changes in each profile were 
presented in the line charts. The first trend was that 
the DEGs specifically changed in obesity group, includ-
ing profile 41 and profile 20 (Fig. 2B). The second trend 
was that the DEGs particularly changed in NAFL group. 
Profile 36 and profile 50 were upregulated, and profile 11 
was downregulated in NAFL compared with other stages 
(Fig.  2C). The third trend was DEGs only changed in 
NASH group. HIST1H1D and THBS2 in profile 31 was 
in line with this trend (Fig. 2D). The fourth trend was that 
DEGs changed in all three stages. We found that DEGs 
in profile 46, 49,59, 57, 55, 54, 58, 47, 56 were upregu-
lated, and profile 15,0, 3, 12, 6, 1, 14 were downregulated 
(Supplementary table  1). For example, EME1, OLFM2, 
PNMT, PRKCE, SPTBN5 in profile 46 were upregulated, 
and DCD, KRT14, SCGB2A2, PIP, SCGB1D2 in profile 15 
were downregulated in all three periods (Fig. 2E).

Dynamic network analysis in health‑ 
and obesity‑NAFL‑NASH sequences
To explore the common and distinct mechanisms of 
healthy or obese subjects-derived NAFLD, dynamic 
networks were constructed by Dynet in the Cytoscape 
software. As a result, 20 key nodes in the health-
NAFL-NASH sequence and 178 key nodes in the obe-
sity-NAFL-NASH sequence were identified by DyNet 
(Fig.  3A). Distinct pathways of these rewired nodes in 
different sequences were analyzed by KEGG (Fig.  3B). 
Only eight pathways including p53 signaling pathway, 
AGE − RAGE signaling pathway in diabetic complica-
tions, PPAR signaling pathway, Endocrine resistance, 
Toll − like receptor signaling pathway, HIF-1 signal-
ing pathway, Relaxin signaling pathway, and Apoptosis 
were significantly enriched in the health-NAFL-NASH 
sequence. The top 10 KEGG pathways enriched in 
obesity-NAFL-NASH sequence included cell cycle, 
Chemokine signaling pathway, Progesterone-medi-
ated oocyte maturation, Oocyte meiosis, p53 signaling 
pathway, Viral protein interaction with cytokine and 
cytokine receptor, Toll − like receptor signaling path-
way, Cellular senescence, Pertussis and Neuroactive 
ligand − receptor interaction (Fig.  3B). Nine rewired 
nodes COL3A1, CXCL9, CYCS, CXCL10, THY1, 
COL1A2, SAA1, CDKN1A, and JUN were commonly 
included in both health- and obesity-NAFL-NASH 
sequences (Fig. 3C). The expression levels of these nine 
node genes were all up-regulated during NAFLD pro-
gression derived from obese or non-obese individuals 
(Fig. 3D), suggesting these nine genes may play funda-
mental roles in NAFLD development. The PPI network 
of these nine key nodes was displayed in Fig. 3E.

We next analyzed the correlation between these nine 
genes and the clinical parameters (Fig.  3F). We dem-
onstrated that all of the nine genes were positively 
correlated with the NAFLD activity score, and CYCS 
has the highest correlation (r = 0.7, P = 4.96 ×  10–7). 
CDKN1A (r = 0.53, p = 4.28 ×  10–4) was the most rel-
evant gene with age. Moreover, CYCS was the most 
relevant gene with the lobular inflammation grade 
(r = 0.59, P = 6.95 ×  10–5) and the cytological balloon-
ing grade (r = 0.62, P = 1.66 ×  10–5). CXCL10 (r = 0.55, 
P = 2.37 ×  10–4) was the most relevant gene with the 
steatosis grade, and THY1 (r = 0.67, P = 2.04 ×  10–6) 
was the most relevant gene with the fibrosis stage.

Fig. 1 Function annotation of DEGs in obese, NAFL and NASH patients by GSEA. A Consistently changed DEGs between health, NAFL and NASH 
in GSE126848 and GSE130970. B DEGs in obesity NAFL and NASH. C-E The top 5 significant upregulated and downregulated gene sets based on 
normalized enrichment score (NES) were presented as ridgeline plots (C obese; D NAFL; E NASH). The top 2 upregulated and downregulated gene 
sets in disease groups (C obesity; D NAFL; E NASH) were ranked by NES on the right

(See figure on next page.)
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Fig. 1 (See legend on previous page.)
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Identification of dynamic co‑expression module 
during NAFLD progression
To investigate the dynamic co-expression networks dur-
ing NAFLD progression, CEMiTool was carried out to 
disclose highly correlated gene modules. The sample 
dendrogram and clinical trait heatmap were displayed 
in Fig. 4A. A power of β = 3 was selected by scale inde-
pendence and mean connectivity (Fig.  4B and C). Five 
modules were enriched by co-expression network anal-
ysis. Module 4 (M4) was inhibited in health and obe-
sity groups, and activated in NAFL and NASH. M2 was 
inhibited in health and obesity groups, and only activated 

in NASH. M5 was activated in health and obesity groups, 
and only inhibited in NAFL. M3 was activated in health 
and obesity groups, and inhibited in NAFL and NASH 
(Fig.  4D). The relationships between these modules and 
nine fundamental nodes from dynamic networks were 
analyzed by WGCNA (Fig.  4E). JUN, CYCS, COL1A2, 
THY1, CXCL10, CXCL9 and COL3A1 were positively 
correlated with M2. CDKN1A, SAA1, CYCS, CXCL10 
were negatively correlated with M3. CDKN1A, CYCS, 
COL1A2, THY1, CXCL10, and COL3A1 were positively 
correlated with M4. None of the nine rewired nodes were 
significantly correlated with M5.

Fig. 2 Dynamic expression patterns of DEGs during NAFLD progression. A Dynamic expression profiles of DEGs. Each box represents a temporal 
expression model profile. The black line indicates the model expression trend. The red lines represent the individual gene expression at different 
periods. The profile ID is shown in the top left corner, and the number of gene in the profile is shown in the bottom left corner. The colored profiles 
indicate that a statistically significant number of genes was assigned to the profile. B–E Classified gene expression trends in the 4 meaningful trends 
were present in different stages. The top five DEGs ranked by expression fold changes in each profile were presented in the line charts
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Fig. 3 Dynamic molecular networks along the NAFLD progression sequence. A The node genes involved in dynamic networks of obesity and 
non-obesity derived NAFLD. Dynamic networks were created and Dn-Scores of node genes were calculated by DyNet. B Pathway enrichment 
of node genes in healthy- or obesity-NAFLD sequences, respectively. C The Dn-Score of common nodes shared by healthy- and obesity-NAFLD 
sequences. D Expression heatmap of nine common nodes at different NAFLD stages. E The protein–protein interactions of nine common nodes 
were retrieved by the STRING database. F Pearson correlation analysis of the nine nodes and clinical parameters of NAFLD
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Fig. 4 Dynamic co-expression module identification during NAFLD progression. A Sample dendrogram and clinical trait heatmap. B Analysis of 
scale independence for various soft-thresholding powers. C Analysis of mean connectivity for various soft-thresholding powers. D Modules were 
enriched by co-expression network analysis. The activities of modules at different stage during NAFLD progression were calculated by NES from 
GSEA, and the modules enriched in each stage with adjust P value < 0.05 were shown in heatmap. E Module-node relationships were assessed by 
WGCNA. Nine common node genes identified above were selected to evaluate the correlation with Modules
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Fig. 5 Gene interaction networks of dynamic co-expression modular analysis. The size and color of the nodes were proportional to their degrees. 
The most connected hubs in each module were labelled in the networks. The co-expression hubs which originally presented in the CEMiTool 
module were colored blue, while the hubs which inserted from the interaction file were colored red. The hub which acted as co-expression hub 
and interaction hub was colored green
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Gene interaction networks of dynamic co‑expression 
modules
Then, we analyzed the gene networks of the dynamic 
modules (Fig.  5). SREK1, SRSF11, ZC3H13, RBM25, 
LUC7L3 were co-expression hubs of M2. NME2, 
HIST4H4, POU5F1, EEF1A2, A2M, ISG15, AARSD1, 
SRRM1, TP63, and MTUS2 were interaction hubs of 
M2. MIB2, REX1BD, PPP1R16A, APOE, CCDC85B were 
co-expression hubs of M3. HOMER3, OIP5, ZBTB16, 
ZIC1, SNCA, FASN, CCDC85B, MRPL38, MRPL12, and 
SORT1 were interaction hubs of M3. CLDN10, EPCAM, 
CFTR, CDH6, CLIC6 were co-expression hubs of M4. 
DCLK1, TPM2, FLNC, KRT19, EFEMP1, CCDC8, 
CHEK2, PKN3, CFTR and MLF1 were interaction hubs 
of M4. MYL1, ACTA1, CKM, MYH2, MYBPC2 were 

co-expression hubs of M5. KRT5, MYH7, TTN, NEB, 
DES, MYL1, MYOZ1, TNNT1, CBS and ACTN2 were 
interaction hubs of M5.

Functional pathway annotation of modules by ORA
ORA was conducted to search the GO biological pro-
cess in modules (Fig.  6). Av node cell to bundle of his 
cell communication was enriched in M2. Response to 
copper ion, cellular response to copper ion, and stress 
response to metal ion were enriched in M3. Muscle con-
traction, cell adhesion mediated by integrin, extracellular 
structure organization, negative regulation of calcium 
ion transmembrane transport, regulation of chemot-
axis, regulation of muscle contraction, muscle system 
process, regulation of smooth muscle contraction, and 

Fig. 6 Functional pathway annotation of modules by ORA. ORA was conducted to search the Gene Ontology (GO) biological process in four 
modules generated by CEMiTool. Top ten pathways rank by adjust p value enriched in each module were listed in Bar graphs. The bar of pathway 
which cross the dashed grey line indicated a significant pathway with adjust P value < 0.05
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negative regulation of ion transmembrane transport were 
enriched in M4. Muscle filament sliding, muscle contrac-
tion, muscle system process, actin mediated cell contrac-
tion, actin filament based movement, myofibril assembly, 
cellular component assembly involved in morphogenesis, 
muscle cell development, actomyosin structure organi-
zation, and muscle tissue development were enriched in 
M5.

Discussion
NAFLD represents a spectrum of liver disorders includ-
ing NAFL and NASH, while NASH is tightly associated 
with the end stage of liver disease [13]. Obesity is one of 
the main causes of NAFLD. Thus, it is urgent to prevent 
the progressions from obesity to NAFL and from NAFL 
to NASH. Here, we attempted to explore the key molecu-
lar pathways and dynamic co-expression networks along 
the NAFLD progression course.

Functional pathway annotation of DEGs showed that 
cell cycle related pathways were upregulated in NAFL 
and NASH. It is consistent with previous research that 
canagliflozin could attenuate the development of NASH 
partly by the induction of cell cycle arrest [14]. Our data 
indicated that cell cycle related pathways also partici-
pated in NAFL. Aravinthan A found the permanent cell 
cycle arrest in NAFLD [15], which indicated an oppo-
site role in NAFLD. Therefore, the roles of cell cycle in 
NAFLD need further exploration.

To investigate the gene alteration trends from obe-
sity to NASH, the dynamic profiles of DEGs were 
conducted. In the current study, we screened several 
expression models that specifically changed at par-
ticular disease stages, which could be novel markers 
to identifying obesity, NAFL and NASH, respectively. 
SAA1 and SAA2 are serum amyloid A family mem-
bers, and only upregulated in NAFL. They are highly 
expressed in response to liver inflammation [16], and 
play important roles in lipid metabolism [17]. Moreo-
ver, SAA1 was one of the 9 rewired nodes in health- 
and obesity-NAFL-NASH sequences. SAA1 acted 
as a hub gene of PPI network constructed by DEGs 
from NAFLD dataset GSE106737 and GSE83452 [18]. 
Increased hepatocyte SAA1 aggravated liver inflam-
mation in NAFLD [19]. Our findings suggested that 
SAA1 and SAA2 may play key roles in early NAFL 
stage. THBS2 only upregulated in NASH. It has been 
proved that the gene expression of THBS2 increased 
in fatty liver of NAFLD [20]. THBS2 increased dur-
ing diet-induced mice hepatic fibrosis progression [21] 
and was up-regulated in the fibrosis stage 3–4 state 
of NAFLD patients [22]. We speculated that THBS2 
might be related to the hepatic fibrosis in the late 
NASH period. Besides, we also found DEGs that were 

obviously changed in all periods. PRKCE is a member 
of the Protein kinase C family. Protein kinase C mem-
bers, such as PKCδ, are closely related to insulin sen-
sitivity and body glucose tolerance [23]. Activation of 
PRKCE links the NAFLD to hepatic insulin resistance 
[24, 25]. PRKCE has been proven to be a critical DEG in 
NAFLD, and the expression level and DNA methylation 
of PRKCE and IGFBP2 were altered in obesity-derived 
NAFLD [26]. Hepatic steatosis leads to hepatic insu-
lin resistance by activating PRKCE [27]. These results 
were consistent with our data, PRKCE kept upregulat-
ing at obesity, NAFL, and NASH stages. We considered 
that the PRKCE regulated the lipid abundance, steato-
sis, insulin resistance, thereby modulated the patho-
genetic process of NAFLD. These results indicated the 
important roles of these DEGs in obese and NAFLD 
development.

Although NAFLD is commonly associated with obe-
sity, it is increasingly being identified in non-obese 
patients. Therefore, we further investigate the com-
mon and distinct mechanisms between the health-
NAFL-NASH sequence and the obesity-NAFL-NASH 
sequence. The pathophysiology of non-obese NAFLD is 
still not clear [28]. It has been reported that metabolic 
syndrome promotes the progression to NASH in non-
obese patients with NAFLD [29]. Our result indicated 
that AGE − RAGE signaling pathway in diabetic compli-
cations, PPAR signaling pathway, Endocrine resistance 
were enriched in healthy-NAFL-NASH sequence, which 
are all associated with metabolic syndrome. On the 
other hand, the obesity-NAFLD sequence was mainly 
enriched in cell cycle, chemokine signaling pathway, cel-
lular senescence.

By combination analysis of dynamic networks and 
dynamic co-expression modules, we also identified 
nine genes that essential for the progression of NAFLD 
derived from obese and non-obese individuals. These 
genes mainly contained collagens, chemokines and 
oncogenes. CYCS has the highest correlation with 
NAFLD activity score, lobular inflammation grade and 
the cytological ballooning grade. CYCS functions as a 
central component of the electron transport chain in 
mitochondria. Although the role and effect of CYCS 
during NAFLD progression have not been explored, a 
recent study demonstrated that CYCS was associated 
with hepatic lipid metabolic misalignment [30]. These 
findings suggested that CYCS might be a novel regula-
tor in promoting the progression of NAFLD. The PPI 
network showed that CYCS interacted with CDKN1A 
and JUN. JUN was most positively correlated with M2. 
JUN and EGR were reported to drive the reprogram-
ming of the Kupffer cell to a scar-associated mac-
rophage phenotype by changing the liver X receptor 
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functions during diet-induced NASH [31]. We also 
demonstrated that M2 was only activated in NASH, 
and we surmised that this module may contribute 
to liver fibrosis to some extent. M3 was inhibited in 
NAFL and NASH, and was most negatively correlated 
with CXCL10. CXCL10 has been reported to inhibit 
autophagic protein degradation and the accumulation 
of ubiquitinated proteins, thereby promoted the devel-
opment of steatohepatitis [32]. Blockade of CXCL10 
protected against steatohepatitis development in mice, 
and CXCL10 levels were significantly higher in human 
NASH [33–35]. We found that CXCL10 upregulated in 
NAFL and NASH samples, and was indeed the most 
relevant gene with the steatosis grade. Our result dem-
onstrated that M4 was activated in NAFL and NASH, 
and may relate to the development of NAFLD as well. 
M4 was most positively correlated with COL1A2 and 
THY1. It has been reported that in severe NAFLD 
patients the levels of pro-IL1β mRNA correlate with 
the expression of COL1A1 [36]. Similar to COL1A1, 
COL1A2 is also a fibrosis-related gene [37], however, 
the role of COL1A2 in NAFLD has not been fully eluci-
dated. We found that THY1 was the most relevant gene 
with the fibrosis stage. THY1 encodes a cell surface gly-
coprotein and member of the immunoglobulin super-
family of proteins, while little is known about its effects 
on NAFLD.

Pathway enrichment showed that response to copper 
ion and cellular response to copper ion were enriched 
in M3. Copper has been proven to play a major role in 
NAFLD [38], and copper homeostasis could counter-
act the progression of NAFLD [39]. In the hub genes of 
M3, SNCA and APOE were reported to be associated 
with copper ion related pathways. SNCA interacts with 
copper in Parkinson’s disease [40]. APOE deletion has 
no effect on copper-induced oxidative stress in the mice 
brain [41], but APOE might participate in protecting the 
liver from copper-induced damage [42]. The relationships 
between hub genes and copper ion related pathways 
remained unclear in NAFLD. FASN was an interaction 
hub gene in M3. FASN catalyzed the synthesis of pal-
mitate and long-chain saturated fatty acids [43]. FASN 
expression was correlated significantly with the degree of 
hepatic steatosis, but not with inflammation or balloon-
ing of hepatocytes [44]. The result was similar to another 
M3 correlated gene CXCL10, which was also relevant 
to the steatosis grade. Therefore, we speculated that 
M3 may closely related to hepatic steatosis. Cell adhe-
sion mediated by integrin and regulation of chemotaxis 
were enriched in M4. Loss of cell adhesion molecule-1 
had beneficial effects in NASH development by reduc-
ing inflammation, and β7-integrin-deficiency results in 
increased steatohepatitis[45]. In the hub genes of M4, 

EPCAM and EFEMP1 were associated with NAFLD. 
EPCAM, the epithelial cell adhesion molecule was upreg-
ulated in NASH [46]. EFEMP1 was identified as a hub 
gene in NAFLD fibrosis [22].

Conclusion
In summary, our study identified a nine-gene signature as 
the potential key regulator in NAFLD progression. The 
results provided potential pivotal genes and the clinical 
markers during NAFLD progression. Further experi-
ments are still needed to explore the function of dynamic 
co-expression networks in NAFLD.
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