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Abstract 

Background: The prevalence of Alzheimer’s disease (AD) varies based on gender. Due to the lack of early stage bio-
markers, most of them are diagnosed at the terminal stage. This study aimed to explore sex-specific signaling path-
ways and identify diagnostic biomarkers of AD.

Methods: Microarray dataset for blood was obtained from the Gene Expression Omnibus (GEO) database of 
GSE63060 to conduct differentially expressed genes (DEGs) analysis by R software limma. Gene Ontology (GO) 
analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and Gene set enrichment analysis 
(GSEA) were conducted. Immune checkpoint gene expression was compared between females and males. Using 
CytoHubba, we identified hub genes in a protein–protein interaction network (PPI). Then, we evaluated their distinct 
effectiveness using unsupervised hierarchical clustering. Support vector machine (SVM) and ten-fold cross-validation 
were used to further verify these biomarkers. Lastly, we confirmed our findings by using another independent dataset.

Results: A total of 37 female-specific DEGs and 27 male-specific DEGs were identified from GSE63060 datasets. 
Analyses of enrichment showed that female-specific DEGs primarily focused on energy metabolism, while male-
specific DEGs mostly involved in immune regulation. Three immune-checkpoint-relevant genes dysregulated in 
males. In females, however, these eight genes were not differentially expressed. SNRPG, RPS27A, COX7A2, ATP5PO, 
LSM3, COX7C, PFDN5, HINT1, PSMA6, RPS3A and RPL31 were regarded as hub genes for females, while SNRPG, RPL31, 
COX7C, RPS27A, RPL35A, RPS3A, RPS20 and PFDN5 were regarded as hub genes for males. Thirteen hub genes 
mentioned above was significantly lower in both AD and mild cognitive impairment (MCI). The diagnostic model of 
15-marker panel (13 hub genes with sex and age) was developed. Both the training dataset and the independent 
validation dataset have area under the curve (AUC) with a high value (0.919, 95%CI 0.901–0.929 and 0.803, 95%CI 
0.789–0.826). Based on GSEA for hub genes, they were associated with some aspects of AD pathogenesis.

Conclusion: DEGs in males and females contribute differently to AD pathogenesis. Algorithms combining blood-
based biomarkers may improve AD diagnostic accuracy, but large validation studies are needed.
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Introduction
Alzheimer’s disease (AD) is the most prevalent neurode-
generative disease among the elderly, which is character-
ized by memory impairment, language, visuospatial skills 
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and other cognitive domains decline [1]. It is reported 
that women have higher overall incidence than men 
[2–9]. Sexes differ in genetic drivers [10], clinical sever-
ity [11], and neuropathological manifestations [12, 13]. 
Focusing on the sex-specific AD genetic drivers could 
transform the way treatments are developed and admin-
istered and lead to more personalized interventions.

The primary pathologies of AD is associated with 
neurofibrillary tangles (NFTs), amyloid-β (Aβ) plaque 
deposition, inflammation, synaptic alterations, and neu-
rovascular amyloidosis [14]. The sexual dimorphism in 
brain structure, genetic background, inflammation, glio-
sis, and immune module are considered as important 
implications for mechanistic investigation of AD [15, 16]. 
Men often have a greater brain volume than women, and 
so are less sensitive to pathological changes [17], such 
as atrophy, ATP synthase, the mitochondrial proteome, 
a redox protein, and cytochrome oxidase [18, 19]. Addi-
tionally, preclinical studies have demonstrated a sig-
nificantly relationship between estrogen and soluble Aβ 
levels in the brains of wild-type mice after ovariectomy 
[20]. Sex differences also present in immune modula-
tion. Women usually have stronger neuro-inflammation 
and neuro-immune response than men [21]. Some sex-
specific genes are associated with AD pathogenesis such 
as amyloid and tau. For instance, females have a stronger 
correlation between APOE and tau than males [22]. In 
the GWAS study of CSF AD biomarkers, the female-
specific roles played by SERPINB1 in amyloidosis, OSTN, 
and CLDN16 in tau pathology have been observed [23]. 
Another research has confirmed that a male-specific 
ubiquitin-specific peptidase 9 is a positive regulator of 
MAPT, a protein associated with AD [24]. As a mul-
tifactorial disease, biomarkers are crucial for accurate 
diagnosis, as well as aiding in the understanding of dis-
ease mechanisms. Fluid biomarkers may differ based on 
sex, but only a few studies have focused on this. Further 
research is needed.

Recently, with the development of the high-throughput 
sequencing, bioinformatics analysis is widely applied to 
unveil underlying mechanisms such as biomarkers iden-
tification or molecular classification of diseases [25, 26]. 
Our study is to investigate the critical sex-associated dif-
ferentially expressed genes (DEGs) and identify novel 
diagnostic biomarkers. We first downloaded microarray 
datasets for peripheral blood in AD and control samples 
from the GEO database. Stratifying the total sample into 
two groups distinguished by sex. We identified DEGs 
among males and females separately. Next, series of 
enrichment analyses, protein–protein interaction (PPI) 
analysis, an unsupervised hierarchical clustering analy-
sis and support vector machine (SVM) were performed. 
We identified hub genes in males and females separately. 

Combined with sex and age, a 15-gene-based diagnosis 
model was constructed. This study provides more molec-
ular insights into the sex differences in AD, and identifies 
candidate biomarkers for diagnosis (Fig. 1).

Materials and methods
Microarray data acquisition and processing
We downloaded two expression profiling datasets from 
Gene Expression Omnibus (GEO, http:// www. ncbi. nlm. 
nih. gov/ geo). We filtered the datasets: 1) datasets with 
AD in Human Expression Profiling Using Arrays; 2) 
blood samples of AD; 3) each dataset contains at least 
five samples; 4) the research contains information about 
the technology and platform used. Finally, two microar-
ray datasets GSE63060 [27] and GSE63061 [27] with were 
obtained (Table 1).

Data normalization and identification of DEGs in males 
and females
Illumina expression chips from the bead series were used 
as the source of all data. LUMI package in R is used for 
data processing.  Log2 processing is performed on raw 
data by lumiExpresso function. We used GSE63060 data-
set to screen DEGs by comparing AD samples to Control 
samples in males and females separately. The download 
data format is MINIML. R package Limma (version: 
3.40.2) [28] was used to analyze the mRNA differential 
expression. Adjusted P-values were calculated in order to 
correct for false positives. “Adjusted P < 0.05 and FC (Fold 
Change) > 1.3 or FC (Fold Change) <  − 1.3” were defined 
as the thresholds for the screening mRNAs for differen-
tial expression. The adjusted P value for multiple testing 
was calculated using the Benjamini–Hochberg correc-
tion. We constructed volcano plots based on fold-change 
values and adjusted P. The heat map is displayed by the 
R software package pheatmap. Using a Venn diagram, we 
identified and visualized the intersecting or sex-specific 
DEGs for males and females.

Enrichment analysis and immune‑checkpoint‑relevant 
gene expression
Gene ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment analyses 
were performed in R (version 3.6.3) with clusterPro-
filer (version 3.14.3) and calculated zscore by GO plot 
package [29] (version 1.0.2). These enrichment results 
were visualized using chord plots. Significantly enriched 
functions and pathways was screened of p-value < 0.05. 
Gene set enrichment analysis (GSEA) was used to ana-
lyze the distribution trend of the genes of a predefined 
set. GSEA was performed by package ggplot2 (Version 
3.3.3) of R. The reference gene set is c2.cp.v7.2.symbols.
gmt in the MsigDB database (https:// www. gsea- msigdb. 

http://www.ncbi.nlm.nih.gov/geo
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org/ gsea/ msigdb/ colle ctions. jsp). After 1,000 permuta-
tions, genes with an adjusted p-value < 0.05 are statisti-
cally significant [30].

Finally, we validated the immune-checkpoint-relevant 
gene expression in males and females separately. The sta-
tistical difference of two groups was compared through 
the Wilcox test.

PPI network construction and hub gene analysis
To further explore the interactions among DEGs in males 
and females separately, PPI network analysis was performed 
using the online tool STRING (https:// string- db. org/, 
version 11.5) [31] with a threshold of combination > 0.4. 
Cytoscape (version 3.8.2) (https:// cytos cape. org/) was used 

to import the interaction information. Cytoscape’s Cyto-
Hubba plugin was used to identify the hub genes. The top 
20 hub genes were calculated using five algorithms includ-
ing stress centrality, closeness centrality, radiality centrality, 
maximum neighborhood component (MNC), and degree. 
Finally, the hub genes were identified by intersecting the 
top 20 genes.

Unsupervised hierarchical clustering analysis
To examine the effectiveness of hub genes in distinguish-
ing AD and Control samples, an unsupervised hierar-
chical clustering analysis was performed. Consensus 
Cluster Plus R package (version v1.54.0) Clustering was 
used for clustering, six clusters are the maximum, and a 

Fig. 1 Work fow chart

Table 1 Characteristics of the selected microarray datasets

Dataset Platform AD: MCI: Control Age female: male Country

GSE63060 GPL6947 145: 78: 102 AD (58-88y) 198: 127 United Kingdom

MCI (63-90y)

Control (52-87y)

GSE63061 GPL10558 138: 109: 133 AD (59-95y) 231: 149 United Kingdom

MCI (57-100y)

Control (63-91y)

https://www.gsea-msigdb.org/gsea/msigdb/collections.jsp
https://string-db.org/
https://cytoscape.org/
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total of 80% of the samples are drawn 100 times, cluster-
Alg = "hc", inner Linkage = ’ward.D2’ [32]. Gene expres-
sion heatmaps with SD > 0.1 are maintained using the R 
software package pheatmap (version 1.0.12).

Classification prediction of AD using SVM
An analysis of classification was conducted using Sup-
port Vector Machine (SVM) and Python (version 3.8). 
To reduce the effects of over fitting, our development 
and validation of a diagnostic model for AD includes a 
training step and a validation step. Most importantly, the 
model was evaluated using an independent data set only 
once. First, in each task of classification, radial basis func-
tion (RBF) were selected as kernel functions and cost (C) 
and gamma (γ) of the kernel function were found to be 
the best by a grid-search approach using ten-fold cross-
validation and establishing receiver operation character-
istic (ROC) curves. Finally, this machine learning model 
was evaluated by classifying AD in a completely inde-
pendent validation set (GSE63061). Using the area under 
the receiver operating curve (AUC), the diagnostic per-
formance was estimated. The diagnostic value of SVM 
classifier model was further verified by building an SVM 
with confusion matrix.

To recognize the biological process of the 13 hub genes 
that are possibly associated with AD in GSE63060 data-
sets, GSEA was performed again.

Results
Identification of DEGs
The dataset GSE63060, which included 99 AD and 60 
Control in females and 46 AD and 42 Control in males, 
were carried out to analyze the DEGs. We identified 113 
downregulated DEGs in females (Fig. 2A, B and Supple-
mentary Data 1), and 83 downregulated DEGs along with 
20 upregulated DEGs were observed in males (Fig. 2C, D 
and Supplementary Data 2). Next, volcano plot and heat-
map analyses were used to visualize these DEGs.

Identification of sex‑specific DEGs in males and females
We intersected DEGs lists of males and females from 
dataset GSE63060. Finally, 37 female-specific DEGs and 
27 (18 + 9) male-specific DEGs were identified (Fig.  2E 
and Supplementary Data. 3).

Enrichment analysis
Analyses of GO and KEGG were used to investigate the 
functionalities of these sex-specific DEGs, respectively. 
GO analyses provide three different domain of biologi-
cal processes (BP), molecular function (MF), and cel-
lular component (CC). The top 3 GO analyses were 
selected and were drawn in a chord plot. Female-specific 
DEGs were mainly enriched in proton transmembrane 

transport, oxidative phosphorylation and ribosome 
assembly (BP); proton-transporting two-sector ATPase 
complex, catalytic step 2 spliceosome and mitochondrial 
respiratory chain(CC); proton transmembrane trans-
porter activity, activity of cysteine-type endopeptidase 
in apoptosis, activity of proton-transporting ATPase and 
rotational mechanism (MF) (Fig.  3A and Supplemen-
tary Data 4). Male-specific DEGs tended to be enriched 
in killing of cells of other organism, disruption of cells 
of other organism and antimicrobial humoral response 
(BP); cytoplasmic vesicle lumen, vesicle lumen and secre-
tory granule lumen (CC); structural constituent of ribo-
some, rRNA binding and protease binding (MF) (Fig. 3B 
and Supplementary Data 5). Next, we showed the KEGG 
pathways in the column chart. The KEGG pathway 
enrichment analysis in females showed that the DEGs 
were enriched in oxidative phosphorylation, protein 
export and collecting duct acid secretion (Fig.  3C and 
Supplementary Data  4). The KEGG pathway analysis in 
males revealed that the DEGs were significantly enriched 
in ribosome, transcriptional misregulation in cancer, 
staphylococcus aureus infection and NOD-like receptor 
signaling pathway (Fig. 3D and Supplementary Data 5).

In order to multi-perspective observation of the enrich-
ment pathway, we will use GSEA to assess the genes’ con-
tribution to the phenotype. In both females and males, 
21 and 16 pathways were enriched, respectively. Among 
them, there are 5 female-specific pathway and 2 male-
specific pathway (Fig. 3E, F, Supplementary Data 6 and 7).

Immune‑checkpoint‑relevant gene expression in males 
and females
Immune checkpoint molecules are regulatory molecules 
that inhibit the immune system. Eight immune suppres-
sive molecules were selected [33, 34]. Female and male 
immunocheckpoint-related genes were depicted through 
boxplots (Fig.  4). As compared with Control samples, 
HAVCR2 and LAG3 expression levels were significantly 
higher in male AD samples at 9.978 and 8.373 (P = 0.012 
and 0.041; Wilcoxon rank sum test). CTLA4 was signifi-
cantly lower in male AD samples at 7.592 (P = 0.032; Wil-
coxon rank sum test). However, these eight genes were 
not differentially expressed in females (Supplementary 
Data 10).

PPI network construction and hub gene selection
DEGs in females and males were inputted separately into 
STRING to obtain PPI records. The interaction network 
was visualized by Cytoscape 3.8.2 (Fig. 5A, B).

Next, the hub genes were identified with the cyto-
Hubba plugin. According to the five algorithms of 
Degree, MNC, Radiality, Stress and Closeness, the top 
20 hub genes were selected. Finally, eleven hub genes 
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Fig. 2 Identification of DEGs and venn diagram analysis in GSE63060. A Volcano plot of females. B Heatmap of females. C Volcano plot of males. D 
Heatmap of males. Volcano plot: red marks upregulated genes; grey marks non-significant genes; blue marks downregulated genes. Heatmap: red 
marks high expression; blue marks low expression. E Venn diagram of female-specific DEGs and male-specific DEGs. Light green: female-specific 
DEGs; orange and light blue: male-specific DEGs. AD: Alzheimer’s disease; NC: Normal control
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(SNRPG, RPS27A, COX7A2, ATP5PO, LSM3, COX7C, 
PFDN5, HINT1, PSMA6, RPS3A and RPL31) in females 
and eight hub genes (SNRPG, RPL31, COX7C, RPS27A, 
RPL35A, RPS3A, RPS20 and PFDN5) in males were iden-
tified (Fig. 5C, D, Supplementary Data 8 and 9).

To further identify the genetic evidence of sex differ-
ences, the top 20 genes by degree are shown separately 
for males and females (Fig.  5E, F). RPL39 is located on 
the X chromosome in males, while females lack the first 
20 genes on the X chromosome.

Hub gene expression in MCI and AD
Considering the remarkable expression changes of these 
13 mRNAs (SNRPG, RPS27A, COX7A2, ATP5PO, 
LSM3, COX7C, PFDN5, HINT1, PSMA6, RPS3A, 
RPL31, RPL35A and RPS20) in male and female patients 
with AD separately, they may play a role in AD patho-
genesis. Consequently, the 13 promising mRNAs were 
selected for further study. Using GSE63060, we assessed 
whether the expression levels of the 13 hub genes dif-
fered. Compared with the Control samples, the expres-
sion levels of the 13 genes were significantly decreased 
among the MCI and AD samples (p < 0.001; Dunn’s test). 
Additionally, we found that the mRNA expression levels 
of RPL31, PSMA6 and COX7A2 in the AD samples were 
higher than those in MCI samples (p = 0.042, 0.035 and 
0.020; Dunn’s test) (Fig. 6 and Supplementary Data 10).

Our next step was to compare the 13 gene expres-
sion level between AD and Control samples by enrolling 
another independent dataset (GSE63061). As indicated 
in Fig. 7, AD samples show a significant reduction in the 
mRNA expression of all 13 hub genes (p < 0.001, Wil-
coxon rank sum test) (Supplementary Data 10).

Since no single mRNA has been shown to have a prom-
inent diagnostic value to date, greater attention has been 
given to their synergistic effects. To demonstrate the 
classification ability of the 13 hub genes combination, an 
unsupervised hierarchical clustering analysis was per-
formed. As shown in Fig. 8, these hub genes demonstrate 
an excellent capability for distinguishing samples with 
similar clinical manifestations.

Identification of Potential Biomarkers of AD Using SVM
According to the analyses above, we obtained differ-
ent hub genes and performed enrichment analysis for 

females and males separately. Besides genes, clinical fea-
tures such as age and sex may also play an important role 
in pathogenesis. Thus, we used the expression levels of 
these 13 genes combined with age and sex data as fea-
tures to investigate their diagnostic value. SVM analysis 
with a ten-fold cross validation procedure indicated the 
AUC of the 15-marker panel was 0.919 (95%CI, 0.901–
0.929). Furthermore, SVM with confusion matrix analy-
sis also achieved an accuracy of 85.4%, with sensitivity of 
91.0% and specificity of 77.5% (Fig. 9A).

A second microarray dataset GSE63061 was collected 
and analyzed using SVM in order to confirm the classi-
fication reliability of the above selected feature genes. As 
expected, the 15-marker panel can provide an AUC of 
0.803 (95%CI, 0.789–0.826) and achieved an accuracy of 
69.4%, with sensitivity of 73.2% and specificity of 61.7% 
(Fig. 9B).

Towards gaining deeper insights into the 13 hub 
genes, we identified potential BPs between AD and Con-
trol using GSEA. They are shown as a mountain map 
(Fig.  10). Most of these genes have been implicated in 
cotranslational protein targeting to membrane, establish-
ment of protein lacalization to endoplasmic reticulum, 
protein localization to endoplasmic reticulum and trans-
lational initiation.

Discussion
AD is a common disorder in the elderly and females are 
at higher risk of developing AD than males. Previous 
researches were usually based on CSF or brain tissue 
that may limit the application. Many studies have dem-
onstrated that the blood can be used to detect disease-
related changes [35–37]. Our study recruited blood 
tissue microarray data, and we integrated the differen-
tially expressed genes in females and males separately.

Base on sex-specific DEGs, the KEGG pathways with 
smallest p-value enriched in females include oxidative 
phosphorylation, protein export, and collecting duct acid 
secretion. KEGG pathways enriched in males include 
ribosome, transcriptional misregulation in cancer, 
staphylococcus aureus infection, and NOD-like recep-
tor signaling pathway. We discovered that abnormality 
of pathway is often associated with energy metabolism 
in females, whereas in males, the abnormality is pri-
marily related to immune regulation. Females are more 

(See figure on next page.)
Fig. 3 GO and KEGG pathway analyses of DEGs and GSEA plot. A The chord plot of DEGs in females. BP includes GO:1902600, GO:0006119, 
GO:0042255; CC includes GO:0016469, GO:0071013, GO:0005746; MF includes GO:0015078, GO:0097153, GO:0046961. B The chord plotof DEGs 
in males. BP includes GO:0031640, GO:0044364, GO:0019730; CC includes GO:0060205, GO:0031983, GO:0034774; MF includes GO:0003735, 
GO:0019843, GO:0002020. C KEGG in females. D KEGG in males. E GSEA in females. Female-specific pathway includes gap junction (NES = 1.800, 
p.adj = 0.036), acute myeloid leukemia (NES = 1.693, p.adj = 0.036), chemokine signaling pathway (NES = 1.677, p.adj = 0.040), phosphatidylinositol 
signaling system (NES = 1.649, p.adj = 0.036), and mapk signaling pathway (NES = 1.608, p.adj = 0.043). F GSEA in males. Male-specific pathway 
includes toll like receptor signaling pathway (NES = 1.875, p.adj = 0.038) and natural killer cell mediated cytotoxicity (NES = 1.819, p.adj = 0.038)
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Fig. 3 (See legend on previous page.)
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susceptible to estrogen’s effects on energy homeostasis. 
Research has shown that estrogen in females plays a sig-
nificant role in AD sex differences in preclinical and clini-
cal studies [38, 39]. Female-specific pathways have also 
been found in a study of sex differences, but there were 
no male-specific pathways, possibly because tissue and 
ethnicities differ [40]. During AD pathogenesis, ribosome 

dysfunction can lead to altered translation, specifically 
in astrocytes [41, 42]. During immune challenge, male 
astrocytes produced more inflammatory molecules than 
female derived from cerebral cortex [43]. These studies 
show that males generally appear to have higher neu-
roimmune tone in the brain. However, the association 
between sex and these pathways involved in AD has not 

Fig. 4 Analyse of genes related to immune checkpoints. The expression distribution of immune checkpoint in AD and Control. The abscissa 
represents different immune checkpoints; the ordinate represents Normalized expression level (  log2 transformation). *: p < 0.05. A Females; B Males
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Fig. 5 PPI network construction and hub gene selection. A PPI network of DEGs in females. B PPI network of DEGs in males. C Hub gene selection 
of females. D Hub gene selection of males. E The top 20 genes of degree in the female PPI network. F The top 20 genes of degree in the male PPI 
network. MNC: maximum neighborhood component
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been studied. Additionally, analyzing the BP of male-spe-
cific DEGs showed that immune function, such as kill-
ing of cells of other organism, disruption of cells of other 
organism, antimicrobial humoral response, were stronger 
in AD samples.

To gain comprehensive insights, GSEA was con-
ducted to identify potential pathways among males and 
females. As expected, male-specific pathway including 
toll like receptor signaling pathway and natural killer 

cell mediated cytotoxicity favours an immunological 
abnormalities. Next, we further detected the immune 
checkpoint molecules. Three of the eight immune check-
point genes dysregulated in males, however, there were 
no differential gene expression in females. An immune 
checkpoint is a molecule that inhibits the immune sys-
tem. Through controlling immune responses, they are 
essential to maintain self-tolerance and prevent auto-
immune reactions. The observed sex dimorphism in 

Fig. 6 Expression levels of the 13 hub genes in MCI and AD by GSE63060. The abscissa represents AD, MCI and Control samples; the ordinate 
represents Normalized expression level. *: p < 0.05; **: p < 0.01; ***: p < 0.001; ns: no significant difference
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immune checkpoint inhibitor responses is likely due to 
inherent differences between males and females [44–46]. 
Recent studies confirm that the immune checkpoint con-
tributes to AD pathogenesis. It is well documented that 
mini-mental state examination (MMSE), tau proteins 
and Amyloid-β in AD were demonstrated to correlate 

with CTLA-4+T cells [47]. There could be sex-based dif-
ferences in AD-intrinsic features that have been shaped 
by the immune system during AD development and 
immunoediting.

In the PPI network, SNRPG, RPS27A, COX7A2, 
ATP5PO, LSM3, COX7C, PFDN5, HINT1, PSMA6, 

Fig. 7 Expression levels of the 13 hub genes in GSE63061. The abscissa represents 13 hub genes; the ordinate represents Normalized expression 
level ***: p < 0.001

Fig. 8 Unsupervised hierarchical clustering analysis. A Consistency of clustering results heatmap. Rows and columns represent samples; blue 
represents AD; red represents control. B The expression heatmap of 13 hub genes in AD and control; red represents high expression; blue 
represents low expression
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RPS3A and RPL31 were identified as the female-spe-
cific hub genes, and SNRPG, RPL31, COX7C, RPS27A, 
RPL35A, RPS3A, RPS20 and PFDN5 were identified as 
the male-specific hub genes. SNRPG, RPS27A, COX7C, 
PFDN5, RPS3A and RPL31 were identified as com-
mon hubs. Nevertheless, other hub genes differ greatly 
between sexes. Moreover, the 13 genes were significantly 
dysregulated with AD progression.

A cluster of genes associated with the function and 
structural component of ribosomes, including RPS27A, 
RPL31, RPL35A, RPS3A, and RPS20, makes up most 
of the male-specific genes. Transcriptional changes in 
ribosome-related genes affect downstream translation 

in a broader way. Ribosome profiling was utilized in 
an in  vitro experiment to investigate how the lack of 
oxygen and glucose immediately changes the tran-
scription and translation of the genes in brain cells. 
The study concluded that oxidative stress has a greater 
effect on translation than transcription. It is alarming 
that testosterone can increase oxidative stress [48, 49] 
and oxidative stress-related conditions [50], and oxida-
tive stress exacerbates testosterone’s negative impact 
on cognition through its negative effects on androgens 
[51–54]. It can be inferred that sexually dimorphic dif-
ferences may be a result of the expression of sex-specific 
ribosomal differential genes in AD. PSMA6 belongs 

Fig. 9 Support vector machine analysis of the 15-marker panel. A ROC curves of classification and confusion matrix in GSE63060. B ROC curves of 
classification and confusion matrix in GSE63061. AD: Alzheimer’s disease; NC: Normal control
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to  component of the 20S core proteasome complex 
that participates in the ATP-dependent degradation of 
ubiquitinated proteins. Ubiquitin proteasome system 

activity is integral to estradiol’s effects on memory, 
then this could lead to exciting new avenues of basic 
research into hormonal regulation of cognition, which 

Fig. 10 GESA for the 13 hub genes
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could lead to important clinical implications for treat-
ing neurodegenerative disorders in which sex-based 
differences play a role [55]. LSM3 and SNRPG take role 
in the spliceosome’s construction. As a component of 
the U4/U6-U5 tri-snRNP and the U1, U2, U4, and U5 
snRNP complexes, they mostly performs pre-mRNA 
splicing-related tasks, including as RNA silencing and 
destruction. A snRNA(U1)accumulation has been 
observed in Alzheimer’s disease [56]. In human brains, 
identifying  cryptic splicing errors with neurofibrillary 
tangle  burden  implicates  spliceosome disruption and 
transcriptome perturbation in AD  Tau-mediated neu-
rodegeneration [57].  These results show an independ-
ent function of U1 snRNA in regulating RNA splicing, 
suggesting that aberrant RNA processing may mediate 
neurodegeneration [58]. One study profiled the expres-
sion of snRNAs by applying small RNA sequencing 
to sncRNA isolated from anterior  cingulate cortex  of 
schizophrenia patients. Two snRNAs were found to be 
differentially expressed between female cases and con-
trols [59]. However, no report has been published on 
the relationship between snRNA and sex differences in 
AD. HINT1 belongs to the histidine triad superfamily, 
which is widely expressed in different tissues. Ageing of 
the brain is a major risk factor for many neurodegenera-
tive disorders including Alzheimer’s. The downregula-
tion of HINT1  has also been reported in diabetes and 
AD [60, 61]. Yu W et al. [62] found that potassium 2‐(1‐
hydroxypentyl)‐benzoate can increase HINT1 expres-
sion levels, thus improving spatial learning and memory 
deficits in diabetic animals. Chen Q et  al.’s study sug-
gests that  HINT1  may be associated with schizophre-
nia and the association is sex specific [63]. According 
to our study, HINT1 was found to be significantly dif-
ferentially expressed in female AD. All these results 
suggest that HINT1 may play a role in neuronal func-
tion, but its exact physiological and cellular functions 
in AD remain unknown. PFDN5 belongs to prefol-
din family. It is highly expressed in neurons and other 
neural cells, which can protect cells from apoptosis by 
decreases the toxicity of misfolded proteins. Interest-
ingly, whole blood mRNA expression data  from  Alz-
heimer’s  patients  revealed downregulation of  PFDN5, 
which could be related to higher levels of toxicity of Aβ 
[64]. The results of our research analysis support this 
conclusion. The present study identified ATP5PO and 
COX7A2 as female-specific hub genes, which were sig-
nificantly associated with ATP synthesis, heat produc-
tion and oxidative phosphorylation. In female brains, 
estrogen control of glucose metabolism is dismantled 
during midlife, resulting in a shift in fuel systems and 
the emergence of dynamic neuroimmune phenotypes. 

As fuel use shifts, white matter is at risk of catabolism 
[65]. PSMA6 belongs to  component of the 20S core 
proteasome complex that participates in the ATP-
dependent degradation of ubiquitinated proteins. Ubiq-
uitin proteasome system activity is integral to estradiol’s 
effects on memory, then this could lead to exciting new 
avenues of basic research into hormonal regulation 
of cognition, which could lead to important clinical 
implications for treating neurodegenerative disorders 
in which sex-based differences  play a role [55]. From 
above analysis, it can be concluded that 13 genes were 
potential biomarkers for pathogenesis of AD. Assess-
ing and confirming the clinical utility, we constructed a 
15-marker panel (13 genes combined with age and sex) 
based SVM model, which can effectively predicts AD in 
independent testing sets.

Our work differs most significantly from previous work 
in the following ways: 1) Here, for the first time, we show 
the molecular mechanisms of sex differences in periph-
eral blood from Alzheimer’s patients. 2) To identify the 
diagnostic value of these genes, we used machine learn-
ing methods to reduce overfitting and it can be improved 
in future studies.

Our study has some limitations: 1) Although we reg-
istered a second dataset for external verification, our 
results need to be confirmed by larger-scale studies. 2) 
The group differences in education and body mass index 
are potential confounds that could have affected our 
results, so further research is needed to examine the risks 
for these subgroups. 3) The mechanisms of these hub 
genes remain undefined in AD and they could be fur-
ther explored to elucidate the functions and underlying 
mechanisms.

Conclusion
Our analyses revealed different hub genes of AD by the 
analysis of DEGs for males and females separately. We 
find that the pathophysiological pathways of AD dif-
fer in males and females. Using 13 genes as a base, we 
developed a diagnostic model with a high AUC value 
in peripheral blood This study provides insight into the 
underlying molecular mechanisms for sex dimorphism as 
well as potential biomarkers that may be useful for diag-
nostics and therapy.
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