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Abstract 

Background:  Endometrial cancer (EC) is the most common gynecologic malignancy in developed countries and 
its prevalence is increasing. As an emerging therapy with a promising efficacy, immunotherapy has been extensively 
applied in the treatment of solid tumors. In addition, chromatin regulators (CRs), as essential upstream regulators of 
epigenetics, play a significant role in tumorigenesis and cancer development.

Methods:  CRs and immune checkpoint-related genes (ICRGs) were obtained from the previous top research. The 
Genome Cancer Atlas (TCGA) was utilized to acquire the mRNA expression and clinical information of patients with 
EC. Correlation analysis was utilized for screen CRs-related ICRGs (CRRICRGs). By Cox regression and least absolute 
shrinkage and selection operator (LASSO) analysis, prognosis related CRRICRGs were screened out and risk model 
was constructed. The Kaplan–Meier curve was used to estimate the prognosis between high- and low-risk group. By 
comparing the IC50 value, the drugs sensitivity difference was explored. We obtained small molecule drugs for the 
treatment of UCEC patients based on CAMP dataset.

Results:  We successfully constructed a 9 CRRICRs-based prognostic signature for patients with UCEC and found the 
riskscore was an independent prognostic factor. The results of functional analysis suggested that CRRICRGs may be 
involved in immune processes associated with cancer. Immune characteristics analysis provided further evidence 
that the CRRICRGs-based model was correlated with immune cells infiltration and immune checkpoint. Eight small 
molecule drugs that may be effective for the treatment of UCEC patients were screened. Effective drugs identified by 
drug sensitivity profiling in high- and low-risk groups.

Conclusion:  In summary, our study provided novel insights into the function of CRRICRGs in UCEC. We also devel-
oped a reliable prognostic panel for the survival of patients with UCEC.
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Introduction
In developed countries, uterine corpus endometrial 
carcinoma (UCEC) is the most common gynecologic 
malignancy, and its incidence is increasing [1]. In gen-
eral, UCEC patients have a relatively good prognosis, 
but those with advanced UCEC have a poor treatment 
response, and therefore, their prognoses are worse [2].

Open Access

*Correspondence:  tg980927@126.com

2 Department of Gynecology and Obstetrics, The Second Affiliated Hospital 
of Dalian Medical University, Dalian 116000, Liaoning Province, China
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-2176-7812
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s41065-022-00253-w&domain=pdf


Page 2 of 13Liu et al. Hereditas          (2022) 159:40 

A multiple signature model would fundamentally 
improve the prognostic value compared to a single bio-
marker, and multigene expression signatures have also 
been reported in various cancers for prognosis prediction 
[3, 4]. In this study, we aimed at constructing a signature 
based on chromatin regulators (CRs)-related immune 
checkpoint related genes (ICRGs) to predict overall sur-
vival (OS) in UCEC patients.

Epigenetics refer to the modifications of gene activ-
ity without changing the DNA sequence [5, 6]. During 
epigenetic remodeling, tumor cells acquire immuno-
tolerance that provide them with the ability to escape 
the supervision of the body’s immune system [7]. It has 
been established that abnormal epigenetic changes can 
contribute to carcinogenesis [8, 9]. CRs are essential 
upstream regulators of epigenetics that regulate epi-
genetic alterations in three main ways: DNA methyla-
tion, histone modification, and chromatin remodeling 
[10, 11]. On the one hand, CRs can encode and decode 
various modifications on cytosines and histones, such 
as methylation and demethylation [12, 13]. On the other 
hand, chromatin remodelers can disrupt the association 
between the nucleosome and DNA and initiate a nucleo-
some repositioning, that can result in abnormal epige-
netic modifications [10, 13, 14]. Previous studies have 
demonstrated that dysregulated expressions of CRs and 
the corresponding functional aberrations are associated 
with a variety of cancer-related biological processes that 
also affect UCEC such as inflammation [15], autophagy 
[16], proliferation [17], and apoptosis [18]. For example, 
HMGA1 is a chromatin remodeler that is thought to be 
effective in predicting prognostic outcomes in UCEC 
[19]. HMGA1 expression can be regulated by KIFC1, 
which is involved in the aerobic glycolysis of UCEC cells 
leading to proliferation of tumor cells. HMGA1 can also 
enhance the aggressiveness of tumor cells through the 
HMGA1-MMP-2 pathway [20]. CDK1 is also as a mem-
ber of the CRs that promotes UCEC malignant progres-
sion through the PVT1/miR-612/CENP-H/CDK1 axis. 
Therapeutic inhibition of CDK1 activity can trigger apop-
tosis and cause a G2/M phase arrest of cell cycle [21], 
which can improve the prognostic outcome of UCEC 
patients.

Immune checkpoints (ICs) are immune regulators of 
stimulatory and suppressive pathways that play impor-
tant roles in maintaining self-tolerance and regulating 
the type, extent, and duration of immune responses [22]. 
Malignant cells evade the immune system and change the 
tumor microenvironment through activating ICs [23, 24]. 
Previous studies have revealed that the unique immuno-
logical profile of UCEC makes it a promising target for 
immunotherapy [25]. A growing number of studies have 
demonstrated that immune checkpoint blockade (ICB) 

therapy which targets PD-1 and PD-L1 is effective in 
improving the prognosis of UCEC patients [26–28]. Clin-
ical studies on ICB treatment for the remaining ICs, such 
as LAG3 [29] and TIGIT [30], have been conducted and 
yielded many results. In addition, other ICRGs, including 
agonists of stimulatory checkpoint pathways, inducible 
ICOS, CD40, or molecules targeting tumor microenvi-
ronment (TME) components, are coming into our atten-
tion [24].

Despite the striking clinical benefit of ICB therapy in 
multiple cancer types, the response rate of most patients 
to ICB therapy is less than 20–30% [31]. Therefore, 
combining with other types of anticancer therapies is 
considered as a novel strategy to enhance the therapeu-
tic efficacy of ICB therapy [32]. Research has gradually 
revealed the role of CRs in regulating the expression of 
ICRGs and in antitumor immunity [33, 34]. For example, 
the findings from Lin et al. showed that loss of SETDB1-
TRIM28 complex can upregulate CD247 expression and 
increase the infiltration of effector CD8 + T cells through 
activation of the cyclic GMP–AMP synthase (cGAS)–
stimulator of interferon genes (STING) pathway and 
thus synergizes with ICB [35]. Indeed, it was also dem-
onstrated by Di Zhao et  al. They found that the knock-
down of the chromatin remodeler, CHD, can remodel 
the TME by regulating the expression of ICGs in prostate 
cancer resulting in the reduction of the number of mye-
loid-derived suppressor cells (MDSC) in the TME and 
an increase in the number of CD8 + T cells. These effects 
significantly increase prostate cancer responsiveness to 
ICI leading to an improved patient prognosis [36]. Taken 
together, we argue that chromatin regulators-related 
immune checkpoint related genes (CRRICRGs) can also 
serve as potential biomarkers and therapeutic targets 
to improve the response rate of UCEC patients to ICB 
therapy. However, to our knowledge, no study has been 
conducted to investigate the relationship between CRs, 
ICRGs, and UCEC, and therefore, we are hoping to fill 
this gap. In this study, we investigated the expression lev-
els of CRs in UCEC through bioinformatic analysis and 
screened 14 genes associated with prognosis in chroma-
tin regulators-related immune checkpoint related genes 
(CRRICRGs). We successfully developed a multigenic 
prognostic panel based on 9 CRRICRGs and determined 
their role in tumor immunity in UCEC patients.

Materials and methods
Data collection and screening for CRs‑related ICGs 
(CRRICGs)
Based on previous studies, we found 870 CRs [37] (Sup-
plement Table  1) and 79 ICRGs [22, 38, 39] (Supple-
ment Table  2), and obtained their mRNA expression 
in 547 UCEC tissues. We also obtained on 52 normal 
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tissues from the Cancer Genome Atlas (TCGA, https://​
portal.​gdc.​cancer. gov) and the Gene Expression Omni-
bus (GEO) datasets (GSE63678 and GSE17025). Differ-
ential expression genes (DEGs) were searched for with 
the “limma” R package by comparing tumor tissues with 
normal tissues. We screened DEGs by a Wilcoxon signed 
rank test (false discovery rate, FDR < 0.05). The correla-
tion analysis between CRs and ICRGs was performed 
using Spearman’s correlation. P values less than 0.05 were 
considered statistically significant.

Construction and validation of a prognostic model based 
on CRRICRGs
Using the univariate Cox method, we firstly screened for 
13 CRRICRGs associated with UCEC prognosis, and the 
p-value was corrected using the Benjamini & Hochberg 
(BH) correction approach. Considering the large number 
of predictor variables under study, we utilized the Least 
Absolute Shrinkage and Selection Operator (LASSO) 
method to select a subset of predictor variables that pre-
dict the outcome best while maintaining a good model 
fit by using the “glmnet” package. Ten-fold cross-valida-
tion was used to compute the optimal lambda shrinkage 
coefficient that minimizes cross-validated error and the 
largest value of lambda within one standard error of this 
optimal value. After obtaining the optimal lambda values, 
the variables with the best predictive power of the model 
were selected for prognostic model and risk score con-
struction. [40]. Ultimately, we obtained the 9 CRRICRGs 
and their coefficients. Expression validation was per-
formed by downloading 142 tissues expression data 
from the GTEx web portal (www.​gtexp​ortal.​org). The 
risk score was calculated using the following risk score 
formula (1). The median risk score was used to divide 
patients into high- and low-risk groups. Survival analysis 
(the “survminer” package) was performed using Kaplan–
Meier curve to evaluate the prognosis in two groups. The 
1-, 3-, and 5-year ROC curves were drawn to assess the 
prognostic value of the signature using the “survival” and 
“TimeROC” packages. Then, the GSE119041 (n = 50) 
dataset downloaded from GEO were employed as an 
external validation set to confirm the prognostic value of 
the CRRICRGs-based signature.

Developing a nomogram that incorporates clinical features 
based on risk score
The risk model’s and clinicopathological character-
istics’ prognostic significances were further investi-
gated using univariate and multivariate Cox analysis. 
Meanwhile, the relationship between the panel and 

(1)risk score = (expression value of each gene× and its coefficient)

clinicopathological characteristics was also analyzed. 
A nomogram was developed based on clinical variables 
and the CRRICRGs-based signature to provide reliable 
predictions of 1, 3, and 5-year survival of UCEC patients. 
Calibration curve analyses were also conducted to deter-
mine the suitability of our nomogram for clinical use.

Functional enrichment analysis, Protein–protein 
Interaction (PPI) and Gene Set Enrichment Analysis (GSEA)
The STRING database (http://​www.​string-​db.​org/) and 
Cytoscape software were used to construct and visual-
ize the PPI network. Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) path-
way enrichment analyses were performed for the pre-
diction of the potential functions of the 9 CRRICRGs 
through the “clusterProfiler” and “pathview” packages 
[41, 42]. GSEA was performed to investigate the under-
lying molecular mechanisms among low- and high-risk 
groups, a p-value < 0.05 and an FDR < 25% were consid-
ered statistically significant.

Analysis of immune cell infiltration
Using TIMER, CIBERSORT, CIBERSORT-ABS, QUAN-
TISEQ, MCPcounter, XCELL, and EPIC, we evaluated 
the infiltration level of immune cells between high-risk 
groups and low-risk groups. The correlation between 
the risk score and immune-cell characteristics in UCEC 
patients was explored through Spearman correla-
tion analysis. Furthermore, the expressions of immune 
checkpoint genes were explored to predict the effect of 
immune checkpoint blockade (ICB) therapy [43].

Screening for potential small molecule drugs and drug 
sensitivity analysis
To screen for potential drugs, based on CRRICRGs for 
reversing or inducing the biological states of UCEC, the 
CRRICRGs were inputted into the Connectivity MAP 
database (CMAP, https://​porta​ls.​broad​insti tute.org/
cmap/) [44]. Enrichment scores ranging from − 1 to 1 
were analyzed and we thought that the drug with nega-
tive scores could be beneficial for UCEC treatment. The 
set threshold was with a p-value < 0.01, n ≥ 2, a percent 
non-null = 100, and an enrichment < -0.8. To evaluate the 

sensitivity difference of drugs between high- and low-risk 
group, the “pRRophetic” package was utilized to analyze 
the half-maximal inhibitory concentration (IC50) of anti-
cancer drugs using the Genomics of Drug Sensitivity in 
Cancer (GDSC, http://​www.​cance​rrxge​ne.​org/) database. 
A p-value < 0.05 was considered statistically significant.

https://portal.gdc.cancer
https://portal.gdc.cancer
http://www.gtexportal.org
http://www.string-db.org/
https://portals.broadinsti
http://www.cancerrxgene.org/
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Statistics analysis
All statistical analyses were conducted using R packages 
[R software (version 4.2.0)]. The differences between the 
two groups were compared by Wilcoxon signed-rank 
test. A p-value < 0.05 was considered statistically sig-
nificant (p-value < 0.001 = *** , p-value < 0.01 = ** , and 
p-value < 0.05 = *). The process and study design are pre-
sented in a flow-chart (Fig. 1).

Results
Identification of prognosis‑related differentially expressed 
CRRICRGs
A total of 165 CRs were shown to be differentially 
expressed in UCEC tissues when compared with nor-
mal tissues (Fig.  2A). These included 104 upregulated 
genes and 61 downregulated genes (Fig.  2B). After cor-
relation analysis of the differentially expressed CRs 
with ICRGs, 68 CRRICRGs were screened (Supplement 
table  3) and 40 out of 68 CRRICRGs were differentially 
expressed between UCEC tissues and normal tissues 
(Fig.  2D). 40 target genes were used to construct the 
PPI network (Fig.  2C) and the correlation among genes 
was shown in Fig. 2E. Using Cox regression analysis, we 
evaluated the prognostic value of these 40 differentially 
expressed CRRICRGs and obtained 13 prognosis-related 
CRRICRGs (Supplement Fig. 1A). The intersected genes 
were screened and extracted as shown in Veen diagram 
(Supplement Fig. 1B).

Construction and validation of a multigene signature 
based on prognosis‑related differentially expressed 
CRRICRGs
We constructed a signature containing 9 CRRICRGs 
(BTNL9, CD40LG, CD47, HLA-DMB, HLA-DRB5, 
HLA-G, TNFRSF14, TNFRSF18, TNFRSF4) using 
LASSO Cox regression analysis and demonstrated 
its ability to predict the prognosis of UCEC patients 
(Fig. 3A and B). Meanwhile, the relevant coefficients of 9 
CRRICRs were obtained (Table 1), and the risk score was 
calculated as follow:

(2)

risk score = (0.0423 ∗ BTNL9 expression)

+ (−0.3037 ∗ CD40LG expression)

+ (0.0107 ∗ CD47 expression)

+ (−0.0072 ∗ HLA − DMB expression)

+ (−0.0008 ∗ HLA − DRB5 expression)

+ (−0.0110 ∗ HLA −G expression)

+ (−0.0155 ∗ TNFRSF14 expression)

+ (−0.0129 ∗ TNFRSF18 expression)

+ (−0.0026 ∗ TNFRSF4 expression)

According to the median risk score, patients were 
divided into High- and Low-risk groups (Fig. 3C and D). 
We analyzed the expression differences of 9 prognosis-
related CRRICRGs (Fig. 3G) between the two groups and 
compared the prognostic outcomes of patients in the two 
groups. The results showed that the prognostic outcomes 
of patients in the Low-risk group were significantly bet-
ter than those in the High-risk group (p < 0.001) (Fig. 3E). 
Furthermore, the multigene signature based on the 9 
prognosis-related differentially expressed CRRICRGs can 
predict the 1-, 3- and 5-year OS of UCEC patients and 
the prognostic accuracy of the 9 CRRICRGs-based signa-
ture was 0.69 at 1-year, 0.714 at 3-year and 0.755 at 5-year 
(Fig. 3F). The result of expression validation further sup-
ports our findings described above (Supplement Fig. 2). 
Then, as an external validation of our model, we ana-
lyzed GEO dataset GSE119041, which contains included 
50 UCEC patients. The panel was also considered to be 
effective (Supplement Fig. 3).

Prognostic value of the clinicopathological characteristics 
and relationship between the signature and clinical 
features
To assess the common clinicopathological character-
istics and prognostic value of our prognostic panel, we 
sequentially performed univariate (Fig.  4A) and multi-
variate Cox analyses (Fig. 4B) and demonstrated that age 
(p < 0.001), stage (p < 0.001), grade (p < 0.001), and risk 
score (p < 0.001) independently predict the prognostic 
outcome of patients (Fig. 4C). Wilcoxon signed-rank test 
was utilized to explore the relationship between those 
clinicopathological characteristics and our multigene sig-
nature. The results suggested that patients in the low-risk 
group were younger (p = 0.002), and the tumors showed 
a greater frequency of a higher degree of differentiation 
(p < 0.001) and an earlier tumor stage (p < 0.001) (Fig. 4D-
F). In addition, we hypothesized that the prognostic 

Table 1  Gene list and coefficient

Gene symbol Coefficient

BNTL9 0.0423

CD40LG -0.3037

CD47 0.0107

HLA-DMB -0.0072

HLA-DRB5 -0.0008

HLA-G -0.0110

TNFRSF14 -0.0155

TNFRSF18 -0.0129

TNFRSF4 -0.0026
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signature still has a prognostic value in subgroups based 
on clinicopathological characteristics [45]. Therefore, 
a stratification analysis was further conducted, and the 
results supported our hypothesis that CRRICRGs-based 
signature showed excellent performance in predicting 
outcome in age > 65 (p = 0.038), age <  = 65 (p < 0.001), 
high grade (p < 0.001), low grade (p = 0.002), advanced-
staging (p = 0.003) and early-staging (p = 0.015) 
(Fig. 4G-L).

Developing a nomogram that incorporates clinical 
characters
The above results suggest that the clinicopathological 
features and the CRRICRGs-based signature were associ-
ated with the prognostic outcome of UCEC patients. To 
graphically evaluate the survival probability of an indi-
vidual, a nomogram that integrated clinical variables and 
prognostic signature was developed based on the TCGA-
UCEC dataset to predict the 1-, 3- and 5-year survival 
time of UCEC patients (Fig. 5A). Furthermore, the cali-
bration plot indicated that the nomogram operated in 
line with the ideal model (Fig. 5B).

PPI and functional analyses between High‑risk 
and Low‑risk groups
The correlation of 9 genes was shown in Fig. 6E. The PPI 
network of the prognostic 9 CRRICRGs was constructed 
using STRING database and suggested that HLA-G and 
CD40LG may be the hub genes (Fig.  6F). On the other 
hand, biological process (BP) analyses showed that T 
cell activation, positive regulation of lymphocyte activa-
tion, and positive regulation of leukocyte activation are 
the biological activities in which the 9 CRRICRGs are 
primarily involved (Fig.  6A). The result of cellular com-
ponent (CC) analysis showed that the 9 CRRICRGs are 
involved in the composition of the external side of the 
plasma membrane, the integral component of the lumi-
nal side of the endoplasmic reticulum membrane, and 
MHC protein complex (Fig. 6B). Tumor necrosis factor-
activated receptor activity, death receptor activity, and 
peptide antigen binding were mainly enriched accord-
ing to the molecular function (MF) analysis (Fig.  6C). 
KEGG pathways analysis also indicated that CRRICRGs 
are enriched in several immune- and metabolism-related 
pathways (Fig.  6D). GSEA analysis was performed, and 
the enriched pathways in the high-risk group are pre-
sented in Supplement Fig. 4.

Immune characteristics analysis
The analyses of TIMER, CIBERSORT, CIBERSORT-ABS, 
QUANTISEQ, MCPCOUNTER, XCELL, and EPIC were 
performed to explore the relationship between the panel 

and immune infiltration. Visually, most immune cells 
are significantly different between the high and low risk 
group and low-risk patients appeared to have a larger 
proportion of immune components and more immune 
infiltration (Fig. 7A). Next, we investigated the relation-
ship between risk score and 6 main immune cells’ sub-
types (B cell, CD4 + T cell, CD8 + T cell, Neutrophil, 
Macrophage and Mycloid dendritic cell) [46]. The results 
showed a negative correlation between risk score and the 
infiltration of six immune cells (Fig. 7B-G). ICB therapy 
has become an effective treatment for endothelial cancer 
[47]. Therefore, the correlation between the expression of 
7 key ICs [48] and risk score was explored, and we found 
l ow-risk patients with UCEC had significantly higher 
expression of ICs than high-risk patients (Fig. 7H).

Identification of small molecule drugs
By uploading nine CRRICRGs to the CMAP database, we 
obtained eight small molecule drugs that may be effec-
tive for the treatment of UCEC patients. These drugs 
were tamibarotene, fluoride, DL-Mevalonic acid, panobi-
nostat, isoguanine, dinoprostone, vitamin D3, and simv-
astatin (Table 2).

Drugs sensitivity analysis
By comparing the IC50 value of the common chemother-
apeutic drugs based on the GDSC database, we found 
that patients in the high-risk group are more sensitive to 
cyclopamine, dimethyloxalylglycine (DMOG), dasatinib, 
and cytarabine (Supplement Fig. 5). Moreover, the IC50 
value of docetaxel in the low-risk group of patients was 
higher than that in the high-risk group of patients, indi-
cating that docetaxel is more effective in treating UCEC 
patients in the low-risk group (Supplement Fig. 5).

Discussion
As ICB therapies targeting PD-1/PD-L1 [49] and 
CTLA-4 [50] have shown promising results in clinical 
trials, tumor immunotherapy is attracting more atten-
tion. Multigenic models that are based on ICRGs and 

Table 2  The 8 small drugs of CMP dataset analyses results

CMAP names P-value N Enrichment Percent non-null

Tamibarotene 0.000068 4 -0.927 100%

Fluoride 0.000264 2 -0.911 100%

DL-Mevalonic acid 0.000369 2 -0.893 100%

Panobinostat 0.000504 2 -0.862 100%

Isoguanine 0.003157 2 -0.858 100%

Dinoprostone 0.003287 2 -0.831 100%

Vitamin D3 0.003521 2 -0.812 100%

Simvastatin 0.007725 2 -0.806 100%
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with a high prognostic accuracy, have been constructed 
to predict OS and TEM in patients with a variety of 
tumors, including UCEC [51]. Previous studies not only 
found that CRs play an important role in carcinogenesis, 
but also revealed that they can regulate the body’s anti-
tumor immunity [52, 53]. The study by Zhu K et al. sug-
gested that prognostic models that are constructed based 
on CRs, can predict OS and immune status of bladder 
cancer patients with a relative accuracy [54]. However, 
a CRRICRGs-based prognostic signature for UCEC has 
never been reported.

In this study, we screened 40 differentially expressed 
genes from 68 CRRICRGs using univariable Cox analy-
sis of TCGA database and 13 CRRICGRs associated with 
the prognosis of UCEC. After LASSO-penalized Cox 
regression analysis, a prognostic signature containing 9 
CRRICRGs (BTNL9, CD40LG, CD47, HLA-DMB, HLA-
DRB5, HLA-G, TNFRSF14, TNFRSF18, and TNFRSF4), 
was constructed.

BTNL9 is a member of Butyrophilin (BTN) and Buty-
rophilin-like (BTNL) families, involved in inflammatory 

diseases and tumor development through the regula-
tion of the T cell response [55, 56]. The activation of the 
RAS/MEK signaling pathway can downregulate BTNL9 
expression [57], thereby deregulating BTNL9 inhibition 
of tumor cell invasion, leading to poorer prognostic out-
comes [58]. Studies have identified a downregulation of 
BTNL9 expression in osteosarcoma [59], colon cancer 
[60], lung adenocarcinoma [61], and breast cancer [62]. 
Since CD40LG may trigger Th1-type immune responses, 
CD40LG can be used as a target for tumor therapy [63]. 
In addition, CD40LG can tightly regulate T cell activity 
by encoding CD40L, which can upregulate IL-2 expres-
sion by binding to CD40 on the surface of antigen-pre-
senting cells (APCs) [64]. As a result, the CD40LG-CD40 
axis can be used as a biomarker to predict various tumor 
prognosis [65]. Signal-regulatory protein α (SIRPα) is a 
CD47 ligand that is expressed on major APCs, includ-
ing macrophages, dendritic cells, and neutrophils. SIRPα 
expression is upregulated in tumor cells and usually indi-
cates worse prognosis [66, 67]. It was found that by block-
ing CD47 with anti-CD47 antibodies, the interaction 

UCEC sample from TCGANormal sample from TCGA and
GEO(GSE63678 and GSE17025)

Lasso and multivariate Cox
regression analysis

Prognosis analysis

Kaplan-Meier plo tter
analysis and ROC curve

mRNA expression data
acquisition

Differently expressed chromatin
regulato rs (CRs) and immune

checkpo int related genes (ICRGs)

Progosis-related CRRICRGs

9-genes signature
model

External
validation(GSE119041)

Clinical characteristics
evaluation

Nomogram

Functianal enrichment analysis
based on the risk mdel

GO and KEGG

GSEA

Immune analysis

Immune infiltration and
immune related cells

Immune checkpoint genes

Identification of small
molecular drugs

Drugs sensitivity analysis

Fig. 1  The flowchart of whole process of data analysis
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between SIRPα and CD47 can be reduced, resulting in 
the enhancement of the ability of macrophages to present 
tumor cells [68]. As a tumor-associated gene, Human 
leukocyte antigen-DMB (HLA-DMB) is embedded in 
intracellular vesicles [69]. ERG silencing results in the 
downregulation of HLA-DMB expression, which reduces 
the release of class II-associated invariant chain peptide 
(CLIP). This would impair the ability of APC to present 
tumor cells to T cells [70]. Due to the involvement of 
HLA-DRB5 in the processing and presentation of inflam-
matory and immune-related antigens processing and 
presentation [71, 72], HLA-DRB5 may have a predictive 

value for survival rates of patients with malignant tumors 
[73]. HLA-G, located on chromosome 6 at region 6p21.3, 
plays an important role in maternal immune tolerance to 
the fetus [74]. Moreover, since HLA-G possesses immune 
blocking functions, this also suggests that HLA-G can 
be involved as an immune checkpoint in the develop-
ment of many cancers [75]. However, it is interest-
ing to note that in ovarian and rectal cancers, HLA-G 
expression is associated with a good prognosis [76, 77], 
suggesting that HLA-G is not only involved in the regu-
lation of anti-tumor immunity, but its expression may 
also reflect genome integrity. The tumor necrosis factor 

Fig. 2  Gene expression and correlation. A Comparison of CRs expression profiles; B Volcano plots showing up-regulated and down-regulated CRs 
(104 up-regulated and 61 down regulated); C PPI network showing the intersection of 40 differentially express CRRICRGs; D CRRICRGs expression 
profiles; E The correlation of the 40 differentially express CRRICRGs

Fig. 3  The development of a gene signature to predict patients OS. A, B Lasso-Cox regression analysis; C Risk scores of UCEC patients; D Survival 
status of UCEC patients; E Kaplan–Meier survival analysis of patients between high- and low-risk groups; F The 1-, 3- and 5-year ROC curve to predict 
the survival status; G Heatmap showed the differences of 9 genes based on riskscore
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Fig. 4  The relationship between riskscore and clinical characteristics. A Univariate Cox regression; B Multivariate Cox regression; C Heatmap 
demonstrating the association among the riskscore, the expression of 9 CRRICRGs and UCEC clinical characteristics including stage, grade and age; 
D-F The relationship between signature and clinicalpathological chracteristics. Patients in high -risk group were more frequently older with poorly 
differentiated (high-grade) tumors and advanced tumors stage; G-L Stratified analysis of survival of UCEC patients according to age, grade and 
stage

Fig. 5  Construction of a predictive nomogram. A Nomogram to predict the 1-, 3- and 5-year survival of UCEC patients; B Calibration curve for the 
nomogram model
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Fig. 6  The functional enrichment analyses and the correlation of 9 CRRICRGs. A The emapplot from BP enriched pathway; B The emapplot from 
CC enriched pathway; C The emapplot from MF enriched pathway; D KEGG analysis; E The correlation of gene expression; F The PPI network of the 
prognostic 9 CRRICRGs

Fig. 7  Immune characteristics analysis. A Immune cells infiltration between high-risk groups and low-risk groups. There was a larger proportion 
of immune components and more immune infiltration in low-risk group; B The relationship between riskscore and 6 immune cell subtypes. The 
expression of 6 main immune cells’ subtypes was negatively correlated with the RiskScore; C Expression difference of 7 key immune checkpoint 
genes between two groups. The low-risk group exhibited higher immune checkpoint expression levels
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receptor superfamily member (TNFRSF) 4, also known 
as OX40 or CD134, is usually expressed on the surface 
of CD4 + and CD8 + T cells [78]. Because TNFRSF4 can 
be involved in various immune responses through multi-
ple pathways, including the induction of Th2 differentia-
tion and the promotion of cytokine synthesis, it is often 
regarded as a specifical marker of T-cell activation [79, 
80]. Encouragingly, recent evidence demonstrated that 
TNFRSF4 plays a key role in stabilizing TEM in UCEC, 
suggesting that TNFRSF4 may be a promising therapeu-
tic target for T cell-mediated anti-tumor immunotherapy 
in UCEC patients [81–83]. TNFRSF14 is located on the 
short arm of chromosome 1q36 and can regulate a series 
of immune responses, including anti-tumor immunity, 
by encoding a type I transmembrane molecule [84]. 
TNFRSF14 activation can serve as a biomarker in evalu-
ating various cancers’ prognosis, as it is closely associated 
with tumor growth and metastasis [85, 86]. However, in 
this study, the expression of TNFRSF14 was positively 
correlated with OS in patients with endothelial cancer 
and we speculated that this may be due to the following 
reasons: (1) TNFRSF14 activation can upregulate cas-
pase-3 expression, and thus, promote the apoptosis of 
tumor cells [87]; and (2) TNFRSF14 can inhibit epithe-
lial-to-mesenchymal transition (EMT) by blocking the 
PI3K-AKT signaling pathway through the inhibition of 
AKT expression [88]. TNFRSF18 plays a crucial role in 
modulating immune response and inflammation and is 
known as a reliable biomarker that can predict the prog-
nosis of patients with endometrial cancer [89, 90].

The results of the Kaplan–Meier plotter analysis 
showed that patients in the low-risk group had a bet-
ter prognosis compared with that in the high-risk group 
of patients. The AUC of ROC curves further illustrated 
the predictive value of our panel for OS in patients with 
UCEC. Using univariable and multivariable Cox analyses, 
we screened for 4 clinicopathological features (age, race, 
stage, and grade), associated with prognosis of endome-
trial cancer. Moreover, we also found that patients in the 
low-risk group were younger, and that the tumors have 
a greater frequency of a higher degree of differentia-
tion and earlier tumor stage. To visualize the 1-, 3- and 
5-year survival of endometrial cancer patients, we built 
a nomogram with an integrated risk score and clinical 
characters, and the calibration curve also showed that the 
nomogram has good predictive efficacy.

We next performed functional enrichment analysis on 
9 CRRICRGs. The results of GO analysis suggested that 
regulation of immune cell activity, immune-related pro-
tein synthesis, and regulation of various receptor activi-
ties have the most frequent occurrences. The KEGG 
analysis indicated that CRRICRGs are mainly enriched 
in various immune- and metabolism-related pathways. 

The above results demonstrated that CRRICRGs can 
be involved in the development of UCEC through 
regulating multiple immune- and metabolism-related 
pathways and that they may also play important roles 
in regulating the TEM of UCEC. Meanwhile, the result 
of the analyses of TIMER, CIBERSORT, CIBERSORT-
ABS, QUANTISEQ, MCPCOUNTER, XCELL, and 
EPIC indicated the relationship between risk score 
and immune infiltration. By analyzing the distribution 
of immune cells among the high- and low-risk groups, 
we found that the expression of APCs, including mye-
loid dendritic cell, B cells and macrophage, negatively 
correlate with risk score. This illustrated that patients 
in the low-risk group may have a greater number of 
APCs, which can present tumor cells to T cells, and 
thus, enhance anti-tumor immunity. This could par-
tially explain why patients in the low-risk group had 
longer OS compared with that in the high-risk group of 
patients. In addition, the differential expression of 7 key 
ICs between the two groups is demonstrated in Fig. 7H. 
We found that the expression of ICs was significantly 
higher in the high-risk group of patients compared with 
that in the low-risk group of patients. Therefore, we 
thought that the high expression of ICs the high-risk 
group of patients may produce an immunosuppres-
sive microenvironment that leads to a worse prognosis 
for patients. However, from another perspective, this 
finding also suggested that patients in the high-risk 
group are more responsive to ICB therapy. Finally, we 
screened 8 small molecular drugs that may be effective 
in the treatment of UCEC and found that cyclopamine, 
DMOG, dasatinib and cytarabine are effective drugs for 
treating patients in the high-risk group. Patients in the 
low-risk group might benefit from the treatments of 
Docetaxel.

This study has some limitations. All analyses were 
conducted and validated based on TCGA-UCEC, GEO 
and GTEx database, and further validation should 
be done using clinical samples in the future. In addi-
tion, more experiments are required to investigate the 
molecular mechanisms associated with CRRICRGs 
influence on UCEC progression.

Conclusion
In summary, we identified 9 prognosis-associated 
CRRICRGs (BTNL9, CD40LG, CD47, HLA-DMB, 
HLA-DRB5, HLA-G, TNFRSF14, TNFRSF18, and 
TNFRSF4). A panel was developed, and we proved that 
it could predict the outcome and immune microenvi-
ronment in UCEC patients. Furthermore, our find-
ings also suggested a potential therapeutic value of 
CRRICRGs for UCEC.
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