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Abstract 

Background:  This study utilized bioinformatics to analyze the underlying biological mechanisms involved in adipo-
genic differentiation, synthesis of the extracellular matrix (ECM), and angiogenesis during preadipocyte differentia-
tion in human Simpson–Golabi–Behmel syndrome at different time points and identify targets that can potentially 
improve fat graft survival.

Results:  We analyzed two expression profiles from the Gene Expression Omnibus and identified differentially 
expressed genes (DEGs) at six different time points after the initiation of preadipocyte differentiation. Related path-
ways were identified using Gene Ontology/Kyoto Encyclopedia of Genes and Genomes analyses and Gene Set 
Enrichment Analysis (GSEA). We further constructed a protein–protein interaction (PPI) network and its central genes. 
The results showed that upregulated DEGs were involved in cell differentiation, lipid metabolism, and other cellular 
activities, while downregulated DEGs were associated with angiogenesis and development, ECM tissue synthesis, 
and intercellular and intertissue adhesion. GSEA provided a more comprehensive basis, including participation in and 
positive regulation of key pathways of cell metabolic differentiation, such as the “peroxisome proliferator-activated 
receptor signaling pathway” and the “adenylate-activated protein kinase signaling pathway,” a key pathway that nega-
tively regulates pro-angiogenic development, ECM synthesis, and adhesion.

Conclusions:  We identified the top 20 hub genes in the PPI network, including genes involved in cell differentiation, 
ECM synthesis, and angiogenesis development, providing potential targets to improve the long-term survival rate of 
fat grafts. Additionally, we identified drugs that may interact with these targets to potentially improve fat graft survival.

Keywords:  Preadipocytes, Adipogenic differentiation, Angiogenesis, Extracellular matrix, Fat graft, Simpson–Golabi–
Behmel syndrome

Background
Fat grafting is widely used in plastic surgery to restore 
soft tissue defects. However, fat transplantation poses 
several challenges, such as high absorption rates and 
low long-term survival rates. The "graft replacement 
theory" explains why fat grafting can be as high as 

90% resorbable. In  vivo experiments in animals dem-
onstrated that the vast majority of fat cells in the graft 
had died on the first day due to hypoxia [1]. Only some 
cells near the graft edge of the donor site survived, 
but preadipocytes survived up to 72 h. Proliferation of 
surviving cells was observed on the third day, and the 
area of proliferating cells showed a significant increase 
on the seventh day, indicating that regeneration of 
the graft had begun. This suggests that the death of 
adipocytes does not imply necrosis of the graft tissue 
but can trigger a regenerative mechanism, namely the 
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adipogenic differentiation of preadipocytes in the graft 
[2, 3]. Animal experiments have also demonstrated 
that preadipocytes differentiate into vascular endothe-
lial cells with pericyte shape [4, 5] and express pericyte 
marker proteins. Pericytes induce the appearance of 
vascular endothelial progenitor cells, suggesting that 
precursor adipocytes can promote revascularization of 
grafts through different directions of differentiation [6]. 
Therefore, it is essential to explore the hitherto obscure 
mechanisms of preadipocyte differentiation and how 
they form connections with the surrounding stromal 
tissue.

Preadipocytes from multiple species have been stud-
ied extensively; however, these cells have a limited 
lifespan, and primary human preadipocytes rapidly 
lose their differentiation when proliferating in  vitro. 
The study of human preadipocytes is hindered by the 
tissue origin and variability among different adipose 
tissues. Human Simpson–Golabi–Behmel syndrome 
(SGBS) preadipocytes, human diploid cells extracted 
from the adipose tissue of patients with SGBS, provide 
a more reliable tool [7–10], as they are neither trans-
formed nor immortalized, differentiate in chemically 
defined serum-free medium, and can achieve > 90% 
adipogenic differentiation by passage 50. At high rates, 
these cells retain their adipogenic differentiation capac-
ity even up to 50 passages. The SGBS model has been 
used in several studies, including pharmacological 
testing, genetics, and characterization of adipogenesis 
and adipokines [7, 11–13]. However, the influence of 
biomarkers and pathways during SGBS preadipocyte 
differentiation on the biological behavior of grafts dis-
played in the recipient area after fat transplantation has 
not been investigated. Exploration of potential drugs 
that could reverse the generally lower retention rates 
after fat grafting is also a key area of research. With the 
rapid development and widespread application of high-
throughput system technology, bioinformatics analy-
sis can serve as an effective tool for exploration in this 
direction.

In this study, differentially expressed genes (DEGs) 
were analyzed at seven time points before and after adi-
pogenic differentiation of SGBS cells using two SGBS 
cell differentiation-related gene chips downloaded from 
the Gene Expression Omnibus (GEO) database. The bio-
logical mechanisms at different time points of differentia-
tion were investigated using Gene Ontology (GO), Kyoto 
Encyclopedia of Genes and Genomes (KEGG), and Gene 
Set Enrichment Analysis (GSEA). Furthermore, a pro-
tein–protein interaction (PPI) network was established 
using cytoHubba to identify the hub genes of multiple 
biological pathways. Potential drugs that may interact 
with the hub genes were also analyzed.

Results
We normalized the merged dataset and plotted box-
plots (Fig. 1).

Identification of DEGs at different time points 
of differentiation
We analyzed and compared DEGs between undifferen-
tiated samples and samples at six different stages of dif-
ferentiation (Fig. 2). Volcano plots and heat maps were 
plotted to visualize DEGs and their upregulation and 
downregulation (Figs. 3, 4).

GO and KEGG enrichment analysis
GO enrichment analysis

Biological processes  The results showed (Figs. 5, 6) that 
fatty acid metabolism and mitochondria-related biologi-
cal processes were enriched in numerous upregulated 
genes at any time after initiation of differentiation. Many 
downregulated genes were enriched in the processes 
of wound healing, extracellular matrix (ECM) synthe-
sis, cell–matrix adhesion, angiogenesis, and develop-
ment. Negative regulation of the Wnt signaling pathway, 
response to nutrient levels, and lipid localization and 
storage were significantly upregulated in the first 48  h. 
At 96  h, the fat cell differentiation, response to insulin, 
and neutral lipid biosynthetic process of cells became 
upregulated. After 192 h of differentiation, mitochondrial 
metabolic pathways, such as acyl-CoA metabolic pro-
cess and fatty acid β-oxidation, synthesis and metabolism 
of cholesterol and steroids, and biological processes of 
nucleotide synthesis and metabolism were significantly 
upregulated. At 384  h, adipocyte differentiation-related 
pathways were further upregulated, while ossification 
was markedly downregulated.

Cellular components  The results showed that cellular 
components, such as lipid droplets, microbodies, and 
peroxisomes, were upregulated at any given time after 
initiation of differentiation, including cell–substrate 
junctions (such as basement membrane, focal adhesion, 
collagen-containing ECM), and other cellular compo-
nents were significantly downregulated (Figs. 5, 6).

Molecular function  The results showed (Figs.  5, 6) 
that at any given time, significant upregulation of ster-
oid dehydrogenase activity, lipoprotein particle binding, 
and other molecular functions were observed. However, 
significant downregulation of proteoglycan binding, gly-
cosaminoglycan binding, and cytokine receptor binding 
was observed. After 24  h, oxidoreductase activity was 
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Fig. 1  A boxplot was created for two datasets after normalization

Fig. 2  Number of differentially expressed genes (DEGs) at each time point of differentiation. DEGs, differentially expressed genes
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significantly upregulated, whereas insulin-like growth 
factor binding function was downregulated.

KEGG enrichment analysis
The results of the KEGG analysis revealed (Figs.  7, 8) 
that numerous upregulated DEGs were significantly 

enriched in the peroxisome proliferator-activated 
receptor (PPAR) signaling pathway, insulin resistance, 
cholesterol metabolism, and fatty acid metabolism at 
any time point of differentiation. Starting at 24 h, many 
downregulated DEGs were enriched in the p53 signal-
ing pathway. In addition, we observed that the enrich-
ment of downregulated genes in the adenylate-activated 

Fig. 3  Volcano plot reflecting DEGs and their upregulation and downregulation

Fig. 4  Heat map reflecting DEGs and their upregulation and downregulation
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Fig. 5  GO enrichment significance of DEGs in three functional groups at six differentiation time points. These time points represented in the 
histogram include molecular function (MF), biological process (BP), and cellular composition (CC). GO, gene ontology; DEGs, differentially expressed 
genes

Fig. 6  Distribution of DEGs across different GO enrichment functions at six differentiation time points. GO, gene ontology; DEGs, differentially 
expressed genes
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protein kinase (AMPK) signaling pathway became 
apparent at 96 h, while a large number of upregulated 
genes were enriched in this pathway from 192 h. At the 
same time, we observed upregulation of valine, leucine, 
and isoleucine degradation pathway, and of the tricar-
boxylic acid (TCA) cycle.

GSEA
The GSEA revealed (Fig.  9) that significantly enriched 
upregulated genes were positively correlated with 
cell metabolism, division, and differentiation at any 
given time point during differentiation, including fatty 
acid metabolism, TCA cycle and the mitochondrial 

Fig. 7  Advanced bubble chart shows enrichment of DEGs in signaling pathways at six differentiation time points. DEGs, differentially expressed 
genes

Fig. 8  The circle diagram shows the enrichment and regulation of DEGs in the KEGG pathway. DEGs, differentially expressed genes; KEGG, Kyoto 
Encyclopedia of Genes and Genomes
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respiratory chain, the PPAR signaling pathway, and 
degradation of various amino acids (including valine, 
leucine, and isoleucine). We observed enrichment of 
downregulated genes in the core matrisome gene set 
from 24  h. In addition to the apparent enrichment 
of downregulated genes in the vascular endothelial 
growth factor signaling pathway (VEGFA/VEGFR2), 
upregulation was also observed. Genes were enriched 
in pre-initiation of DNA replication, synthesis and rep-
lication of DNA, and programmed cell death. At 48 h, 
genes were enriched in cell cycle checkpoints, mitotic 
metaphase and anaphase, and M phase, while enrich-
ment of ECM glycoproteins became more evident in 
the downregulated genes in ECM organization at 96 h. 
Upregulated genes were noticeably enriched in fatty 
acid β-oxidation at 192 h.

PPI network visualization
Three networks, including pathways related to cell dif-
ferentiation, ECM organization, and angiogenesis devel-
opment, were constructed using the STRING online 
website. Among them, the PPI network of adipogenic 
differentiation-related pathways was enriched to 33 
nodes and 86 edges, that of ECM-related pathways was 
enriched to 161 nodes and 2238 edges, and that of angio-
genesis development was enriched to 184 nodes and 1532 
edges. The enrichment p-values of the above three PPI 
networks were < 1.0 e−16, and the average local cluster-
ing coefficients were 0.626, 0.561, and 0.553, respectively. 
We downloaded the PPI network data and analyzed and 
visualized the top 20 hub genes in the three PPI networks 
using cytoHubba, as shown in Fig. 10 and Table 1.

Identification of potential drugs
Given the PPI network identification results described 
above, we used the Drug–Gene Interaction Database 
(DGIdb) to identify molecular compounds that can 
reverse or enhance these hub genes during adipogenic 
differentiation, which in turn allowed us to identify 
potential drugs that can promote angiogenesis and extra-
cellular matrix remodeling. As shown by the DGI net-
work, becaplermin positively regulates platelet-derived 
growth factor-receptor-alpha (PDGFRA), while 33 drugs, 
including netoglitazone and ragaglitazar, can positively 
regulate PPARγ as shown in Fig. 11.

Discussion
The high absorption and low retention rates of fat grafts 
have substantially hindered the development of adipose 
tissue engineering. Differentiation and revasculariza-
tion of preadipocytes in the recipient area and remod-
eling of ECM tissue are the main factors affecting the 
graft survival rate. However, the mechanisms underlying 
the survival and differentiation of preadipocytes in the 
recipient area after transplantation and their influence on 
the tissue in the recipient area require further study. In 
the present study, based on two GEO datasets, an inte-
grated bioinformatics approach facilitated the analysis 
of changes in the expression of central genes to reveal 
changes in preadipocyte differentiation at different time 
points, including adipogenic differentiation, ECM and 
angiogenesis-related pathways, and potential biomarkers 
and molecular mechanisms.

We identified upregulated and downregulated DEGs at 
six time points of differentiation and further conducted 

Fig. 9  Top 6 gene sets enriched by GSEA at six differentiation time points. GSEA, Gene Set Enrichment Analysis
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enrichment analyses to clarify the functions of each DEG 
at different time points of differentiation.

Enrichment analysis results revealed that cell responses 
to fatty acids, anabolism of fatty acids and lipids, bio-
logical processes related to the mitochondrial respiratory 
chain, PPARγ signaling pathways, and AMPK signaling 
pathways were significantly upregulated at any given time 
during differentiation. The metabolism of fatty acids and 

lipids precedes the synthesis process. The PPARγ and 
AMPK signaling pathways are crucial during precur-
sor cell differentiation. The PPAR pathway is not only 
involved in inflammation, adiponectin signal transduc-
tion, insulin resistance, glucose metabolism, and other 
cellular energy functions but is also involved in the regu-
lation of cell proliferation, migration, and differentiation 
[14–16]. The AMPK signaling pathway regulates protein, 

Fig. 10  Certain hub genes in several functional pathways
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lipid, and carbohydrate metabolism, autophagy, and 
mitochondrial homeostasis and plays an important role 
in regulating the energy input and output of cells [17–19]. 
However, ECM organization and adhesion, angiogen-
esis and development, wound healing, and coagulation-
related biological processes were all downregulated. The 
adipogenic differentiation of cells appeared significantly 
upregulated at 96 h, and the enrichment of upregulated 
genes reached a peak at 384 h. Correspondingly, the ana-
bolic processes involving various nucleotides enriched 
many upregulated genes at 192 h. In addition, there was 

a significant enrichment of downregulated genes in the 
p53 signaling pathway, which participates in many cellu-
lar functions depending on cell type, differentiation state, 
stress conditions, and environmental signals. Cell cycle 
arrest and apoptosis also inhibit stem cell pluripotency 
and cellular plasticity [20–22].

The PPI network and cytoHubba provide us with hub 
genes for three biological processes that affect cell sur-
vival during precursor cell differentiation. The proteins 
encoded by the upregulated hub genes involved in adi-
pogenic differentiation include PPARγ, which controls 

Table 1  Regulation of certain hub genes in several functional pathways

Functional pathway Regulation Hub genes

Cell differentiation Up PPARG, CEBPA, FOXO1, LEP, LPL, SREBF1, FABP4, PPARGC1A, INSIG1, ZBTB16, MAFB, and SORT1

Down IL6, CCND1, LEP, DDIT3, KLF4, PTGS2, WNT5A, PDGFRA, and TRIB3

Extracellular matrix organization Up -

Down COL1A1, COL1A2, COL5A1, COL6A2, COL6A1, COL6A3, COL5A2, COL11A1, COL12A1, COL7A1, COL16A1, 
COL8A1, PLOD1, PLOD2, P4HB, COL13A1, P4HA2, COL22A1, P4HA1, and PLOD3

Angiogenesis development Up AKT1, GRB2, and MAP2K1

Down GAPDH, HSP90AA1, MAPK3, VEGFA, FN1, JUN, HRAS, RHOA, CDC42, ITGB3, VCL, CCND1, STAT1, BCL2L1, RAF1, 
IQGAP1, and CSK

Fig. 11  The Drug–Gene Interaction (DGI) network
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the β-oxidation pathway of fatty acids by binding to the 
nuclear receptors of peroxisome proliferators. These acti-
vated nuclear receptors can bind to DNA-specific PPAR 
response elements and regulate the transcription of their 
target genes, indicating that they regulate adipocyte dif-
ferentiation and glucose homeostasis [23–27].

CCAAT/enhancer-binding protein alpha (CEBPA) 
can directly bind to the consensus sequence 5′-T[TG]
NNGNAA[TG]-3′ and, by acting as an activator of vari-
ous target genes, participates in the coordination of cell 
proliferation arrest and stem cell differentiation [27–29]. 
Current studies suggest that the transcriptional activities 
of PPARγ and CEBPA are pre-conditions for adipocyte 
differentiation. Recent studies have shown that Forkhead 
box-O1 (FOXO1) is also involved in adipocyte differen-
tiation. FOXO1 is a target of AKT and exhibits periodic 
activation along the cell cycle: phosphorylation and 
dephosphorylation. The activated state of FOXO1 inhibits 
the transcriptional activity of PPARγ and CEBPA, thereby 
inhibiting the adipogenic differentiation of preadipo-
cytes [30–32]. The protein encoded by insulin-inducible 
gene-1 (INSIG1) binds to the sterol-sensing domains of 
two proteins, sterol regulatory element-binding protein 
and HMG-CoA reductase, and mediates the transport of 
these two proteins, thereby regulating cholesterol metab-
olism, lipogenesis, and glucose homeostasis [33–36].

Interleukin-6 (IL-6) is a multifunctional cytokine that 
regulates the immune system and metabolism. IL-6 fur-
ther regulates adipocyte proliferation by activating AKT/
STAT3 signaling [37] through "trans-signaling" and by 
synergizing with IL-1β and tumor necrosis factor. Fur-
thermore, IL-6 induces VEGF production, which in turn 
leads to an increase in angiogenic activity and vascular 
permeability [38, 39]. DNA damage-inducible transcript 
3 protein (DDIT3) is a multifunctional transcription fac-
tor in the endoplasmic reticulum stress response that is 
involved in various cellular stress responses and induces 
cell cycle arrest and apoptosis [40, 41]. Krüppel-like fac-
tor 4 (KLF4) transcription factor can be simultaneously 
used as an activator or inhibitor. KLF4 can activate its 
own transcription by binding to the promoter regions of 
its own genes. Experiments have shown that, as an acti-
vator, it can maintain the undifferentiated state of stem 
cells and inhibit differentiation [23, 42]. PDGFRA, which 
can promote or inhibit cell proliferation and migration, 
has been shown to play an important role in the differen-
tiation of bone marrow-derived mesenchymal stem cells 
[43, 44].

ECM tissue-related hub genes are downregulated at 
all time points after initiation of differentiation. These 
genes mainly include the collagen family (COL), such 
as collagen type I (COL1A1/COL1A2), one of the main 
components of the ECM, which not only binds various 

cellular components but also participates in the assembly 
of type V collagen, a key determinant of tissue-specific 
matrix [45]. Recent studies suggest that collagen VI and 
its cleavage products may be involved in fat remodeling 
[46]. Collagen type VII, the basement membrane pro-
tein of stratified squamous epithelium, forms anchoring 
fibrils by interacting with collagen type IV in the ECM, 
which in turn promotes the adhesion of the basement 
membrane to the tissue [47]. Collagen type VIII is the 
main component of the basement membrane behind the 
corneal endothelial cells and a component of the vascu-
lar endothelium [48–50]. Collagen types XIII [51, 52] 
and XVI [53] are involved in integrin-mediated recog-
nition and adhesion between cells and regulate various 
functions, such as cell migration, adhesion, and mor-
phology during tissue growth. The prolyl 4-hydroxylase 
subunit alpha-1/alpha-2 (P4HA1/P4HA2) catalyzes the 
post-translational modification of 4-hydroxyproline in 
the -Xaa-Pro-Gly- sequence in various collagens and has 
been shown to be an important regulator in various can-
cers. PLOD1/2/3 can catalyze the formation of hydroxyly-
sine residues in the -Xaa-Lys-Gly- sequence in collagen, 
which can serve as an attachment point between collagen 
molecules and improve stability, and has recently been 
recognized as an important biomarker for cancer prog-
nosis [54, 55].

Proteins encoded by upregulated hub genes associ-
ated with the development of angiogenesis, such as AKT 
kinase, can regulate many biological processes, including 
metabolism, proliferation, and angiogenesis, by mediat-
ing the phosphorylation of serine/threonine in its various 
downstream substrates. More than 100 candidate sub-
strates have been reported to date, but no specificity has 
been reported for most of them [56–58]. Downregulated 
hub genes are closely related to angiogenesis develop-
ment and ECM adhesion, including vascular endothelial 
growth factor-A (VEGFA) [59], which encodes a protein 
that can induce proliferation and migration of vascular 
endothelial cells, inhibit cell apoptosis, and induce vas-
cular permeability while functioning as an indispensa-
ble cytokine that promotes angiogenesis [60–62]. The 
protein encoded by mitogen-activated protein kinase 3 
(MAPK3) is an extracellular signal-regulated kinase that 
is involved in cell signaling cascades and responds to 
various extracellular signals by regulating cell prolifera-
tion, differentiation, and cell cycle [63–65]. The protein 
encoded by integrin subunit beta 3 (ITGB3) is involved 
in the assembly of integrins, which play important roles 
in cell adhesion and cell surface-mediated signaling [66]. 
In addition, fibronectin 1 (FN1) and genes encoding Ras 
proteins were downregulated.

Overall, the upregulated central genes showed a posi-
tive regulatory effect on adipogenic differentiation, 
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providing support for the "graft replacement theory" at 
the transcriptome and proteome levels, while the down-
regulated central genes were concentrated in blood ves-
sels, formation and development of ECM tissue, and the 
adhesion between cells and tissues. This is consistent 
with the clinical situation, where it is difficult to establish 
tissue and blood supply connections between the recipi-
ent area and donor fat after fat transplantation.

Further, we investigated the drugs or molecular com-
pounds that may interact with the above-mentioned 
hub genes using the DGIdb database, hoping to iden-
tify potential drugs or molecular compounds that may 
improve the graft survival rate after fat transplantation. 
PDGFRA can promote or inhibit cell proliferation and 
cell migration and has been shown to play an important 
role in the differentiation of bone marrow mesenchymal 
stem cells. Becaplermin, as an agonist of PDGFRA that 
increases fibroblasts by increasing cell proliferation, cell 
migration, and ECM deposition, accelerates wound heal-
ing and promotes the formation of granulation tissue and 
blood vessels, and the synthesis of ECM [67, 68]. The 
protein encoded by PPARG​ is PPARγ, a key regulator of 
adipocyte differentiation [69]. Studies have shown that 
PPARγ agonists, such as netoglitazone and ciglitazone, 
can effectively induce bone marrow adipocyte formation 
and induce changes in the weight of extramedullary fat 
depots [70].

There are several limitations to our study. The two data-
sets were only differentiated for a maximum of 16 days, 
although the differentiation of preadipocytes to maturity 
generally occurs over two weeks. Longer differentiation 
time durations may provide new biological informa-
tion. Differences in transcriptome and proteome expres-
sions before and after transplantation of recipient tissues 
should be studied further to elucidate the exact mecha-
nisms. There is no relevant research regarding drug–gene 
interactions and druggable genome for most of the iden-
tified hub genes. Nonetheless, the identification of these 
hub genes provides directions for future studies; promot-
ing upregulation of hub genes involved in the positive 
regulation of adipogenic differentiation, revasculariza-
tion, and ECM synthesis or reversing downregulation of 
hub genes involved in the negative regulation can pro-
mote establishment of the connection between the fat 
graft and recipient tissue, thereby improving long-term 
survival of fat graft.

Conclusions
The challenge posed by fat transplantation lies in its 
low long-term survival rate. Preadipocytes cannot only 
increase the number of adipocytes remaining in the graft 
through adipogenic differentiation, but more impor-
tantly, they can secrete various cytokines to promote 

blood vessel proliferation. It is difficult to establish an 
effective blood supply and stromal connection between 
the graft and recipient area, which leads to the graft’s low 
survival rate, and the underlying biological mechanism is 
still unclear. To this end, our work provides potential tar-
gets for improving the long-term survival of fat grafts by 
identifying the central genes involved in cell differentia-
tion, ECM synthesis, and angiogenesis in preadipocytes 
during differentiation. We also explored some drugs that 
interact with these central genes. However, drug–gene 
interactions for these compounds and the identified hub 
genes require further investigation.

Methods
Microarray data
In this study, the public gene/microarray profiling data-
base GEO (http://​www.​ncbi.​nlm.​nih.​gov/​geo) was used to 
search and match with “Adipocytes,” “SGBS,” and “Homo 
sapiens” as keywords. The inclusion criteria were as fol-
lows: (i) SGBS preadipocytes differentiated and cultured 
for different time periods were used as the experimental 
group, and (ii) SGBS preadipocytes cultured without dif-
ferentiation were used as the control group. We extracted 
the gene chips GSE76131 [71] and GSE119593 [72] from 
the GEO database. Both groups of microarray platforms 
used were the GPL10558 Illumina HumanHT-12 V4.0 
expression beadchip [73]. GSE76131 includes transcrip-
tome datasets for in vitro-induced differentiation, includ-
ing six time points (0, 6, 48, 96, 192, and 384 h) with 3–9 
replicates per time point, for a total of 26 sample files 
[71]. GSE119593 includes transcriptome data collected 
at six time points (0, 24, 48, 96, 192, and 384 h) during 
in vitro induction of SGBS differentiation, with 3–6 rep-
licates per time point, with a total of 46 sample files [72]; 
excluding the experimental group using fructose medium 
and retaining only the ordinary differentiation medium 
group at different time periods left a total of 27 sample 
files. The raw data and platform information files from 
GSE76131 and GSE119593 were downloaded.

Microarray data merging and normalization
The R software (version 4.1.2) (https://​www.r-​proje​ct.​
org/) was used to merge the GSE76131 and GSE119593 
datasets, and the platform file was used for annotation. 
The ComBat function of the sva (version 3.1.5) package 
was used to remove the batch effect of the gene expres-
sion matrix [74], and the normalizeBetweenArrays func-
tion of the limma package (version 3.50.1) was used to 
normalize the gene expression matrix [75].

Identification of DEGs
We used the limma package [75] to set |logFC|> 2 & 
adj.P.Val(FDR) < 0.05 as the screening criteria, and 

http://www.ncbi.nlm.nih.gov/geo
https://www.r-project.org/
https://www.r-project.org/


Page 12 of 15Hu et al. Hereditas          (2022) 159:47 

analyzed the DEGs between the undifferentiated sam-
ples and samples from six differentiation stages. The 
EnhancedVolcano [76] and pheatmap [77] functions 
were used to create volcano and heat maps, respectively, 
in order to visualize DEGs and their upregulation and 
downregulation.

Enrichment analysis
GO analysis defines and describes the functions of genes 
and proteins and annotates which pathway or GO terms 
for each gene may be involved [78]. KEGG analysis was 
used to understand the functional enrichment of high-
level functions and biological systems, which can reveal 
the enrichment of gene sets in specific pathways [79]. In 
this study, the clusterProfiler v3.14.0 [80] and GOplot 
v1.0.2 packages [81] were used to perform GO/KEGG 
analysis and visualization of DEGs at each time point 
of differentiation. The thresholds were set as p < 0.01 
and q-value < 0.01 (GO), and p < 0.05 and q-value < 0.05 
(KEGG).

GSEA
All genes in the samples at each time point of differen-
tiation were further analyzed using GSEA [82]. The gene 
set data were obtained from the Molecular Signatures 
Database (http://​www.​gsea-​msigdb.​org/) C2 Selected 
Gene Set; 2982 genes included in the five pathway data-
bases were included in the CP canonical pathway gene 
set. DEGs were subjected to GSEA using the clusterPro-
filer package with 1000 genome permutations per anal-
ysis. The screening criterion was adjusted to adjusted 
p-value < 0.01.

PPI network construction and hub gene identification
STRING [83] was used to identify and predict the 
DEGs involved in adipogenic differentiation, ECM, and 
revascularization-related pathways in GO, KEGG and 
GSEA, in order to construct and download the PPI net-
work of DEGs data with minimum required interaction 
score > 0.4. Hub genes in the network were identified 
using cytoHubba [84], which is a universal and efficient 
plugin for Cytoscape (https://​cytos​cape.​org/).

Identification of potential drugs
The DGIdb provides information on drug–gene interac-
tions and druggable genome [85]. We used DGIdb to pre-
dict potential drugs that may interact with the hub gene 
in the results obtained from previous research, and used 
Cytoscape to visualize these results.
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