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Abstract 

Background  Neuropathic pain (NP) is one of the most common types of chronic pain and significantly compromises 
the quality of life. Autophagy is an intracellular catabolic process that is required to maintain cellular homeostasis in 
response to various stresses. The role of autophagy-related genes in the diagnosis and treatment of neuropathic pain 
remains unclear.

Methods  We identified autophagy-related differentially expressed genes (ARDEGs) and differentially expressed 
miRNAs (DE-miRNAs) in neuropathic pain by bioinformatics analysis of the GSE145226 and GSE145199 datasets. These 
ARDEGs and their co-expressed genes were subjected to Gene Ontology (GO), Kyoto Encyclopedia of Genes and 
Genomes (KEGG) enrichment analysis, Gene Set Enrichment Analysis (GSEA) and friends analysis. Meanwhile, we con-
structed TFs-ARDEGs, miRNA-ARDEGs regulatory network through ChIPBase database and the HTFtarget database, 
multiMir R package. Finally, we performed immune infiltration analysis of ARDEGs by Single Sample Gene Set Enrich-
ment Analysis (ssGSEA).

Results  We identified 2 potential autophagy-related differentially expressed genes (Sirt2 and ST7) that may be closely 
associated with the pathogenesis of neuropathic pain. GO, KEGG and GSEA analysis revealed that these two ARDEGs 
were mainly enriched in pyridine nucleotide metabolic process, nicotinamide nucleotide metabolic process, Nico-
tinate and nicotinamide metabolism, NF-κB pathway, KRAS signaling, P53 pathway. In the TFs-ARDEGs and miRNA-
ARDEGs regulatory network, miR-140-5p and Cebpb were predicted to be as crucial regulators in the progression of 
NP. For the ssGSEA results, Sirt2 was positively correlated with Eosinophil and Effector memory CD8+ T cell infiltration, 
which suggested that it may be involved in the regulation of neuroimmune-related signaling.

Conclusion  Two autophagy-related differentially expressed genes, especially Sirt2, may be potential biomarkers for 
NP, providing more evidence about the crucial role of autophagy in neuropathic pain.
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Background
Neuropathic pain (NP) is a common pain syndrome with 
primary clinical manifestations, including allodynia, 
spontaneous pain and hyperalgesia [1]. And patients with 
neuropathic pain often have sleep disorders, depression, 
and anxiety. According to previous study, at least 1%-5% 
of the individuals worldwide were diagnosed with neuro-
pathic pain each year [2]. At present, the incidence of NP 
continues to increase, and the medical expenses increase 
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year by year, which has become one of the major public 
health problems in the world [3]. The course of NP is 
prolonged and requires long-term treatment, but so far 
there is still a lack of effective treatment. Conventional 
nerve blocks, surgical operations, and analgesic drugs are 
not always effective, and about half of the patients cannot 
adequately relieve pain, accompanied by different degrees 
of adverse reactions [4]. Considering the intractable and 
economic burden of NP, disentangling the pathogenesis, 
and finding effective treatment are urgently needed.

Autophagy, which is a physiological process that 
degrades self-damaged organelles and macromolecules 
through lysosomes, is critical for maintaining homeosta-
sis in the intracellular environment, survival, differentia-
tion, development [5]. Autophagy is regulated by a group 
of autophagy related genes (ARGs) and recognized by 
corresponding proteins. These proteins form autophago-
somes with a bilayer membrane structure and then fuse 
with lysosomes to perform relevant functions [6]. Some 
studies have shown that autophagy is involved in patho-
logical processes associated with central nervous system 
diseases such as Alzheimer’s disease, cerebral ischemia, 
and spinal cord injury [7, 8]. In addition, autophagy is 
involved in immune defense and inflammatory regula-
tory processes, which have received extensive attention 
[9]. For example, autophagy can regulate inflammasome-
dependent responses by controlling the level of pro-
inflammatory cytokine secretion [10]. When autophagy 
was activated by inflammatory signals, cytokine pro-
duction became limited. A study has shown that inflam-
matory and immune mechanisms in the peripheral and 
central nervous systems contribute to the development of 
neuropathic pain [11]. Infiltration of inflammatory cells 
and activation of innate immune cells after nerve injury 
result in the production and secretion of inflammatory 
mediators. These inflammatory mediators rapidly acti-
vate neuroimmunity, sensitize primary afferent neurons, 
and cause hyperalgesia [12]. Thus, autophagy may be 
involved in the progression of neuropathic pain through 
the modulation of immune responses. Autophagy 
can also be used as a tool to assess the effectiveness of 
experimental therapeutic interventions targeting neu-
ropathic pain. Shi G et  al. have found that the miRNA-
195 increased neuroinflammation and neuropathic pain 
by inhibiting autophagy activation following peripheral 
nerve injury [13]. The study also found that miR-195 
inhibitor treatment increased autophagy activation and 
suppressed neuroinflammation. However, the molecular 
mechanisms underlying the interaction of neuropathic 
pain and autophagy is unclear.

With the development of molecular biology and next-
generation sequencing technologies, it has become pos-
sible to explore the underlying mechanisms of disease at 

the genetic and RNA levels on a large scale [14]. By com-
paring disease cohorts with normal control cohorts, we 
can obtain a large number of gene expression profiles and 
identify differentially expressed genes associated with the 
development and progression of disease. For instance, 
Simin Tang et  al. identified key transcription factors 
(MEF2A) and microRNAs (miR‐16‐5p) in the dorsal root 
ganglion through bioinformatic analysis, and these two 
molecules were crucial regulators in the progression of 
NP [15]. However, bioinformatics analyses exploring the 
relationship between neuropathic pain and autophagy 
are scarce.

Recently, researchers have suggested that neuropathic 
pain behaviors are associated with synaptic plasticity and 
limbic cortical alteration [16]. However, in contrast to the 
limbic system, previous studies on key markers of neu-
ropathic pain mostly focused on inflammatory changes 
in spinal cord neurons. Therefore, we selected two gene 
datasets of limbic cortex for analysis to identify key bio-
markers of neuropathic pain. Furthermore, this study 
explored the relationship between autophagy-related 
genes and NP at the gene level, constructed related regu-
latory networks, revealed potential therapeutic agents 
and obtained information on the correlation between 
key autophagy-related genes and immune infiltrating 
cells. The results of this study may provide a reference 
for autophagy as a therapeutic target for NP and these 
autophagy-related biomarkers may be used for disease 
diagnosis and treatment monitoring.

Materials and methods
Data collection
Neuropathic pain-related microarray data (GSE145199 
and GSE145226) were collected from the Gene Expres-
sion Omnibus (GEO) database (http://​www.​ncbi.​nlm.​
nih.​gov/​geo/) via the GEOquery R package [17, 18]. 
The miRNA expression profiles were obtained from 
GSE145199 (3 pairs of rat nerve injury samples and rat 
control samples) based on the platform of the GPL21572 
[19]. The mRNA expression profiles were obtained from 
GSE145226 (3 pairs of SNI group samples and control 
samples) based on the platform of the GPL1355(19). In 
the GeneCards database (http://​www.​genec​ards.​org/), 
7822 autophagy-related genes (ARGs) were retrieved by 
the word "autophagy" (Table S1) [20].

Analysis of differentially expressed genes
The neuropathic pain-related GSE145199 and 
GSE145226 datasets were first normalized using the 
limma R package [21]. We then used the limma R pack-
age to perform differential analysis of genes in differ-
ent groups of GSE145226 and GSE145199 datasets. 
The genes screened by the criteria of |logFC|> 0 and p 
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value < 0.05 were regarded as differentially expressed 
genes (DEGs) [22]. Differentially expressed miRNAs (DE-
miRNAs) in the GSE145199 dataset were obtained by the 
same threshold. To obtain autophagy-related differen-
tially expressed genes (ARDEGs) related to neuropathic 
pain, we intersected autophagy-related genes and differ-
entially expressed genes (DEGs), and draw a Venn dia-
gram. The results of differentially expressed genes were 
displayed by ggplot2 R package to draw volcano map and 
pheatmap R package to draw heat map.

PPI network construction
Protein–protein interaction (PPI) network is composed 
of proteins and proteins through their interactions with 
each other, which participate in biological signal trans-
mission, gene expression regulation, energy, material 
metabolism, and cell cycle regulation [23]. The STRING 
database is a database for searching interactions between 
known and predicted proteins [24]. In this study, we used 
the STRING database to take the minimum required 
interaction score greater than 0.900 as the criteria for 
ensuring accuracy, and took the top10 genes with the 
minimum required interaction score as the co-expression 
of ARDEGs [25, 26]. The ten co-expressed genes and 
autophagy-related differentially expressed genes were 
used to construct a PPI network, which was visualized 
using Cytoscape software [27].

GO and KEGG enrichment analysis
Gene Ontology (GO) analysis is a common method 
for large-scale functional enrichment analysis, includ-
ing biological process (BP), molecular function (MF) 
and cell component (CC) [28]. The Kyoto Encyclope-
dia of Genes and Genomes (KEGG) is a widely used 
database for storing information about genomes, path-
ways, diseases, and drugs [29].We used the clusterPro-
filer R package to perform GO annotation analysis and 
KEGG pathway enrichment analysis on ARDEGs and 
10 co-expressed differentially expressed genes screened 
through the STRING database [30]. Item screening 
criteria were p value < 0.05 was considered statistically 
significant, and the p value correction method was Ben-
jamini Hochberg (BH).

Gene set enrichment analysis (GSEA)
Gene Set Enrichment Analysis (GSEA) is a computa-
tional method to analyze whether a specific gene set 
is statistically different between two biological states, 
and is usually used to estimate the activity of pathways 
and biological processes in expression dataset [31]. 
We performed GSEA on the neuropathic pain-related 
GSE145226 dataset using the clusterProfiler R package. 
The parameters used in this GSEA enrichment analysis 

were as follows: the seed was 2020, the number of com-
putations was 10,000, the number of genes contained 
in each gene set was at least 10, the number of genes 
contained at most was 500, and the p-value correction 
method was Benjamini-Hochberg (BH). We obtained the 
h.all.v7.2.symbols.gmt gene set from the Molecular Sig-
natures Database (MSigDB), and the screening criteria 
for significant enrichment was p value < 0.05 [32].

Construction of TFs‑ARDEGs, miRNA‑ ARDEGs, drugs‑ 
ARDEGs regulatory network
We explored the regulatory effects of transcrip-
tion factors (TFs) on autophagy-related differentially 
expressed genes through the transcription factors 
retrieved from the ChIPBase database and the HTFtar-
get database [33, 34].

In order to analyze the regulatory relationship between 
autophagy-related differentially expressed genes and 
miRNAs, miRNAs related to ARDEGs were obtained 
from the multiMir R package, and the final results were 
obtained by intersecting them with DE-miRNAs [35, 36].

We used the Comparative Toxicogenomics Database 
(CTD) to predict the direct and indirect drug targets of 
ARDEGs to explore the interaction between ARDEGs 
and drugs [37]. Finally, the Cytoscape software was used 
to visualize the above regulatory network.

Friends analysis
Semantic comparison of Gene Ontology (GO) annota-
tion provides a quantitative method for similarity analysis 
between genes and genomes, and has become an impor-
tant basis for many bioinformatics analysis methods. To 
further compare the similarity between ARDEGs and 
genomes, we used the GOSemSim R package to calculate 
ARDEGs in biological processes, molecular function and 
cell component levels of geometric mean value, and cal-
culate the GO semantic similarity of ARDEGs to get the 
final score [38]. Finally, the results of the friends analysis 
were visualized using the ggplot R package.

Single sample gene set enrichment analysis
Single sample gene set enrichment analysis (ssGSEA), an 
extension of the GSEA method, allows the definition of 
an enrichment score that represents the absolute degree 
of enrichment of the gene set in each sample within a 
specified dataset [39]. We used the ssGSEA algorithm to 
quantify the relative abundance of the GSE145226 data-
set with twenty-eight immune cell infiltrations (Table S2). 
Meanwhile, we performed Spearman correlation analy-
sis on the infiltration degree of various types of immune 
cells and ARDEGs in each sample of the GSE145226 
dataset. The correlation analysis results were then visu-
alized by using the pheatmap R package, and correlation 
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scatter plots were drawn for statistically significant cor-
relation results.

Statistical analysis
All analyses in this study were based on R software (ver-
sion 4.2.1). Continuous variables were presented as 
mean ± standard deviation. Comparisons between the 
two groups were performed using the Wilcoxon rank 
sum test. If there is no special indication, the results were 
calculated by the correlation coefficient between differ-
ent molecules by Pearson correlation analysis. And all the 
results were taken the P value less than 0.05 as a statisti-
cally significant difference.

Results
Identification of DEGs, DE‑miRNAs and autophagy‑related 
DEGs
The flow chart of this study is depicted in Fig.  1. 
We firstly normalized the GSE145199 dataset and 
GSE145226 dataset and plotted boxplots to show gene 
expression profiles before and after processing (Fig. 2A-
D). The black lines are almost on the same line, indi-
cating excellent standardisation, which also ensures 

the accuracy of subsequent data analysis (Fig.  2B, D). 
Subsequently, differential analysis was performed 
on the GSE145199 and GSE145226 dataset using the 
limma R package to obtain the differentially expressed 
genes of the two sets. A total of 1701 DE-miRNAs 
were obtained from the GSE145199 dataset, includ-
ing 839 DE-miRNAs with up-regulated expression and 
862 DE-miRNAs with down-regulated expression, as 
shown by the volcano plot (Fig.  3A). And 1892 DEGs 
were found to reveal a significant differential expres-
sion in the GSE145226 dataset. Compared with the 
control group, 806 DEGs were up-regulated and 1086 
DEGs were down-regulated in the nerve injury group, 
as shown by the volcano plot (Fig. 3B). In addition, the 
heatmap showed that the expression profiles of dys-
regulated genes in both datasets are divided into differ-
ent units (Fig.  3C-D). We intersected the DEGs in the 
GSE145226 dataset with autophagy-related genes, and 
finally obtained two ARDEGs, as shown by the Venn 
diagram (Fig. 3E). These results suggested that differen-
tially expressed autophagy-associated genes identified 
from the microarray dataset may be able to accurately 
distinguish between SNI and control samples.

Fig. 1  Study flowchart
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PPI network and TFs‑ARDEGs, miRNA‑ ARDEGs, 
drugs‑ARDEGs regulatory network analysis
We performed protein–protein interaction analysis on 
autophagy-related differentially expressed genes, and 
used the STRING database to identify top10 genes as 
the co-expressed genes of ARDEGs. Then ARDEGs and 
10 co-expressed genes (Nnt, Ankle2, Nudt12, Nadsyn1, 
Sirt5, Nampt, Pnp, LOC108348065, Foxo1, Nnmt) were 
used to construct a protein–protein interaction network 
(Fig. 4A).

The miRNAs related to ARDEGs were obtained from 
the multiMir R package and intersected with the differen-
tially expressed miRNAs obtained from the GSE145199 
dataset. A total of 2 miRNAs (rno-miR-140-5p, 

rno-miR-877) were obtained, and the miRNA-mRNA 
regulatory network was constructed (Fig. 4B).

Transcription factors (TFs) targeting autophagy-
related differentially expressed genes were obtained 
through ChIPBase database and HTFtarget database. 
A total of 22 transcription factors were found, and an 
TFs- ARDEGs regulatory network was constructed 
(Fig. 4C).

Finally, we used the CTD database to identify potential 
drugs or molecular compounds (drugs) targeting ARDEGs. 
A total of 11 potential drugs or molecular compounds 
(bisphenol A, methylmercuric chloride, Thioacetamide, 
6-chloro-2,3,4,9-tetrahydro-1H-carbazole-1-carboxam-
ide, Sirtinol, Tetrachlorodibenzodioxin, Benzo(a)-pyrene, 

Fig. 2  Data normalization. A GSE145199 dataset before normalization. B GSE145199 dataset after normalization. C GSE145226 dataset before 
normalization. D GSE145226 dataset after normalized. The blue color represents the sample of the SNI group. Yellow represents the sample of 
control group
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Fig. 3  Identification of DEGs, DE-miRNAs and ARDEGs. A, C The DE-miRNAs between SNI group and control group in the GSE145119 dataset. B, D 
The DEGs between SNI group and control group in the GSE145226 dataset. E The Autophagy-related DEGs between SNI group and normal control 
group in the GSE145226 dataset
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Aflatoxin B1, Valproic acid, Carbon Tetrachloride, Tes-
tosterone) were found. And the drugs-mRNA regulatory 
network was established (Fig.  4D). Therefore, Sirt2 may 
play a critical role in the development of neuropathic 
pain through PPI network analysis. Key miR-140-5p and 
Cebpb were predicted to be as crucial regulators in the 

progression of NP with miRNA‐mRNA regulatory net-
work and TFs-mRNA regulatory network analysis. The 
most notable of these is Valproic acid, for which there is 
now scientific evidence to support its effectiveness as a 
therapeutic compound for the treatment of neuropathic 
pain [40].

Fig. 4  PPI Network, TFs-ARDEGs, miRNA- ARDEGs, drugs- ARDEGs interaction network. A The protein–protein interaction network of ARDEGs. B 
The miRNA-mRNA interaction network of ARDEGs. C The TFs-mRNA interaction network of ARDEGs. D The drugs- ARDEGs interaction network of 
ARDEGs
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GO and KEGG enrichment analysis of ARDEGs
We performed GO and KEGG enrichment analysis on 
ARDEGs and 10 co-expressed genes.

As shown in Table  1, the enriched GO terms and 
enriched pathway were listed. According to the GO-BP 
category analysis, these genes were mainly related to pyri-
dine nucleotide metabolic process, nicotinamide nucleotide 
metabolic process; cellular components such as juxtapara-
node region of axon, Schmidt-Lanterman incisure. The 
GO-CC items showed that these genes were mainly located 
in juxtaparanode region of axon, Schmidt-Lanterman 
incisure. According to the GO-MF category analysis, these 
genes were involved in hydrolase activity, acting on car-
bon–nitrogen (but not peptide) bonds, in linear amides, 
NAD + binding. In our pathway enrichment analyses, 
the differential proteins were mainly related to Nicotinate 
and nicotinamide metabolism. In addition, we also visual-
ized the results of GO functional enrichment analysis and 
KEGG pathway enrichment analysis through histograms 
(Fig. 5A). Meanwhile, a network diagram was drawn based 
on GO and KEGG enrichment analysis (Fig. 5B).

Finally, the combined logFC-based GO and KEGG 
enrichment analysis were performed on the expression 
profile data of the 12 genes in the dataset GSE145226. 
The standard score (Z-score) corresponding to each 
term was calculated using the logFC of the molecule 
and visualized by a circle diagram (Fig.  5C). Based on 
the GO and KEGG enrichment results, it suggested 
that ARDEGs may play an important role in the patho-
genesis of neuropathic pain through these pathways 
and could be used for further analysis.

Results of GSEA
We further performed GSEA on the gene expression 
profiling in the GSE145226 dataset to discover signal-
ing pathways that are differentially active in neuropathic 
pain. As shown in Table  2, a total of 20 crucial signal-
ing pathways were obtained. The top5 pathways were 
drawn into a ridge plot (Fig. 6A). And the results showed 
that DEGs in the dataset GSE145226 were significantly 
enriched in NF-κB pathway (Fig.  6B), Uv response 
up (Fig.  6C), KRAS signaling (Fig.  6D), P53 pathway 
(Fig.  6E), Hypoxia (Fig.  6F). Thus, results of GSEA 
showed that NF-κB pathway, KRAS signaling, Hypoxia 
and P53 pathway were significantly more expressed in the 
SNI group and less expressed in the control group, sug-
gesting that these pathways may be closely related to the 
pathogenesis of NP.

Friends analysis of ARDEGs and their co‑expressed genes
In order to compare the importance of ARDEGs in the 
pathway, we performed Friends analysis on Sirt2 and 
their co-expressed genes obtained from the STRING 
database using the GOSemSim R package. As shown in 
the histogram and cloud-rain diagram (Fig.  7A-B), the 
importance of the Sirt2 genes in the pathway was moder-
ate. Since ST7 was not associated with related genes in 
the STRING database, it was not included in the friends 
analysis.

For the purpose of exploring the correlation between 
the 11 genes, we performed correlation analysis based 
on the expression profile data of these 11 genes in 
the GSE145226 dataset. As shown in Fig.  7C, except 

Table 1  GO terms and KEGG pathways for the ARDEGs and co-expressed genes

Ontology ID Description P value

BP GO:0019362 pyridine nucleotide metabolic process 9.26e-09

BP GO:0046496 nicotinamide nucleotide metabolic process 9.26e-09

BP GO:0019674 NAD metabolic process 9.31e-09

BP GO:0072524 pyridine-containing compound metabolic process 1.13e-08

BP GO:0006733 oxidoreduction coenzyme metabolic process 1.54e-08

CC GO:0044224 juxtaparanode region of axon 0.005

CC GO:0043220 Schmidt-Lanterman incisure 0.008

CC GO:0072687 meiotic spindle 0.008

CC GO:0033270 paranode region of axon 0.009

CC GO:0043218 compact myelin 0.010

MF GO:0051287 NAD binding 7.35e-06

MF GO:0016811 hydrolase activity, acting on carbon–nitrogen (but not peptide) bonds, in linear 
amides

8.38e-06

MF GO:0070403 NAD + binding 2.86e-05

MF GO:0016810 hydrolase activity, acting on carbon–nitrogen (but not peptide) bonds 4.05e-05

MF GO:0051721 protein phosphatase 2A binding 2.56e-04

KEGG rno00760 Nicotinate and nicotinamide metabolism 2.23e-19
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for Nampt and Nudt12, Nampt and Nnt, Nampt and 
Sirt5, Nnmt and Sirt5, Nnmt and Foxo1, Sirt2 and Pnp, 
Pnp and Ankle2, which are highly correlated, the rest 
of the genes have low correlations. In summary, the 
importance of both Sirt2 and Pnp in the pathway were 
moderate compared to other genes, and the biological 
functions of these two genes in the NP may be similar.

Immune infiltration analysis of ARDEGs
By using the ssGSEA algorithm to calculate the infil-
tration of 28 kinds of immune cells, we calculated the 
correlation between two ARDEGs (Sirt2, ST7) and the 
abundance of immune cell infiltration respectively. 
And lollipop plots were drawn to visualize the corre-
lation results (Fig.  8A-B). Correlation heatmaps were 

Fig. 5  GO and KEGG enrichment analysis for ARDEGs. A Histogram of GO and KEGG enrichment analysis of ARDEGs. B Network diagram of GO and 
KEGG enrichment analysis of ARDEGs. C Circle diagram of combined logFC-based GO and KEGG enrichment analysis
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then drawn based on the correlations and p-value 
between gene expression level and immune cell infil-
tration abundance (Fig. 8C).

Based on the expression profile data of the 
GSE145226 dataset, we used the estimate R package to 
obtain the immune score of genes, and drew a group 
comparison chart (Fig.  8D) [41]. The results showed 
that the immune score was statistically significant with 
different groups and illustrated that neuropathic pain 
was associated with high immune infiltration.

Finally, the correlation between the expression level 
of Sirt2 and the abundance of immune cell infiltra-
tion (Fig.  8E) was visualized. The results showed that 
the expression level of Sirt2 had a high positive cor-
relation with the infiltration abundance of Eosinophil 
(r = 0.829, P = 0.042), Effector memory CD8+T cell 
(r = 0.943, P = 0.007), Myeloid-derived suppressor 
cell (MDSC) (r = 0.829, P = 0.041), and showed a high 
negative correlation with the infiltration abundance 
of Immature dendritic cell (r = -0.886, P = 0.019), and 
Memory B cell (r = -0.829, P = 0.041). In brief, the 
results of the immune infiltration analysis suggested 
that Sirt2 may be closely associated with neurological 
immune responses and involved in the regulation of 
immune-related signaling.

Discussion
It is well known that autophagy is a biological process 
that specifically removes and recycles aggregated pro-
teins and damaged organelles to maintain cell survival 
[42, 43]. Accumulating evidence suggests that nerve 
injury induced a significant upregulation of autophagy 
activation in damaged nerves, dorsal root ganglion neu-
rons, the dorsal horn of the spinal cord, and plays an 
important role in the development of neuropathic pain 
[44, 45]. Elucidating the correlation between autophagy 
and neuropathic pain may provide new biomarkers and 
novel insights for the diagnosis and treatment of neuro-
pathic pain.

In our study, we found 2 differentially expressed ARGs 
based on GSE145226 dataset and the GeneCards data-
base, including Sirt2 and ST7. At present, research-
ers have shown that Sirt2 may play an important role 
in neuropathic pain, or served as a biomarker for neu-
ropathic pain. A previous study had revealed that Sirt2 
alleviates neuropathic pain by regulating NF-κB signal-
ing and neuroinflammation [46]. Thus, Sirt2 may be a 
potential therapeutic target for the treatment of neuro-
pathic pain. Xiaojiao Z et  al. reported that Sirt2 inhib-
its ferroptosis in the spinal cord by upregulating FPN1 
expression level, reducing lipid peroxidation caused by 

Table 2  GSEA for the genes

ID Setsize EnrichmentScore NES P value

HALLMARK_OXIDATIVE_PHOSPHORYLATION 42 -0.4283 -2.3908 0.002

HALLMARK_TNFA_SIGNALING_VIA_NFKB 36 0.6969 3.578 0.002

HALLMARK_UV_RESPONSE_UP 20 0.4691 1.9815 0.0146

HALLMARK_E2F_TARGETS 22 -0.3983 -1.7589 0.0156

HALLMARK_MYC_TARGETS_V1 39 -0.314 -1.6959 0.0204

HALLMARK_PI3K_AKT_MTOR_SIGNALING 16 -0.4478 -1.7707 0.0226

HALLMARK_P53_PATHWAY​ 25 0.3777 1.7325 0.0259

HALLMARK_HYPOXIA 27 0.371 1.7302 0.0281

HALLMARK_KRAS_SIGNALING_DN 14 0.4893 1.7608 0.0297

HALLMARK_KRAS_SIGNALING_UP 31 0.3158 1.5345 0.0644

HALLMARK_INFLAMMATORY_RESPONSE 19 0.3799 1.5533 0.0679

HALLMARK_FATTY_ACID_METABOLISM 22 -0.349 -1.541 0.0702

HALLMARK_ESTROGEN_RESPONSE_EARLY 22 0.3411 1.488 0.0798

HALLMARK_INTERFERON_GAMMA_RESPONSE 20 0.3521 1.4874 0.0917

HALLMARK_APICAL_JUNCTION 23 -0.3279 -1.4461 0.097

HALLMARK_PROTEIN_SECRETION 16 -0.36 -1.4237 0.1

HALLMARK_HEME_METABOLISM 17 0.3729 1.4474 0.1066

HALLMARK_DNA_REPAIR 21 -0.3269 -1.4168 0.1207

HALLMARK_UV_RESPONSE_DN 23 0.3126 1.3865 0.1247

HALLMARK_MYOGENESIS 29 0.2791 1.3241 0.1549
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iron accumulation, and preserving changes in GPX4 and 
ACSL4 level, thereby alleviating NP [47]. However, there 
is currently no molecular mechanism by which Sirt2 is 
involved in the development of neuropathic pain by regu-
lating autophagy. Another study revealed that Sirt2 may 
regulate cell proliferation and apoptosis by inhibiting 
autophagy [48]. And in the chronic constriction injury 
model, promotion of astrocytes autophagy and inhibition 

of apoptosis may be associated with remission of NP 
[49]. Therefore, we speculated that Sirt2 may regulate the 
progression of NP by suppressing autophagy. A previous 
study showed that ST7 was significantly negative corre-
lation with level of the pro-inflammatory cytokine secre-
tion [50]. Moreover, the activation of autophagy inhibits 
neuroinflammation, which in turn relieves neuropathic 
pain [13]. In sum, although there is no study on the 

Fig. 6  Results of GSEA enrichment analysis. A ridge plot of top5 pathways. B, C, D, E, F enrichment plot of top5 pathways
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involvement of ST7 in the occurrence and development 
of NP, we suppose that it is necessary to further investi-
gate its potential functions in NP.

GO and KEGG enrichment analysis showed that two 
ARDEGs and their co-expressed genes were mainly 
related to pyridine nucleotide metabolic process, nico-
tinamide nucleotide metabolic process, Nicotinate and 
nicotinamide metabolism. In the GSEA results, we 
mainly found that NF-κB pathway, KRAS signaling, P53 

pathway were associated with NP. Lin Z et  al revealed 
that Astaxanthin alleviated neuropathic pain by inhibit-
ing the nuclear factor-κB (NF-κB) p65 and the inflamma-
tory response [51]. Overexpression of Fn14 activated the 
NF-κB pathway by promoting the translocation of p65 
into the nucleus of damaged dorsal root ganglia (DRG) 
neurons, thereby promoting the progression of NP [52]. 
Gao Y et al also revealed that suppression of p53 resulted 
in down-regulation of p53 protein expression, thereby 

Fig. 7  Friends analysis of ARDEGs. A Histogram of friends analysis of ARDEGs. B Cloud and rain map of friends analysis of ARDEGs. C Correlation 
heatmap of correlation analysis between gene expression level of ARDEGs in GSE145226 dataset
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Fig. 8  Immune infiltration analysis of ARDEGs. A Lollipop plot of the correlation analysis between the expression level of ST7 and the abundance 
of immune cell infiltration. B Lollipop plot of the correlation analysis between the expression level of Sirt2 and the abundance of immune cell 
infiltration. C The Correlation heatmap of correlation analysis between the expression level of ARDEGs and the abundance of immune cell 
infiltration. D The violin diagram of immune Score of different groups (SNI and control) in GSE145226. E Scatter plot of correlation analysis between 
Sirt2 and immune cell infiltration abundance
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relieving thermal hyperalgesia in the chronic contrac-
tile injury model [53]. In a mouse model of spinal nerve 
ligation, GADD45A may play a role in the development 
of neuropathic pain by activating the p53 pathway [54]. 
Thus, these two ARDEGs may play vital roles in NP 
through these pathways.

Currently, researchers have revealed that TFs and 
microRNAs were crucial regulatory factors in the devel-
opment of NP [46, 55]. Therefore, we constructed reg-
ulatory networks of TF-mRNA, microRNA-mRNA 
interactions, respectively, to reveal the potential interac-
tions among the TFs, ARDEGs, and microRNA under 
pain conditions. As shown in Fig.  4, Cebpb was con-
nected to two ARDEGs, suggesting its importance in 
NP. Zhisong Li reported that peripheral nerve injury 
caused by chronic contractile injury (CCI) upregulates 
the abundance of the transcription factor Cebpb in the 
dorsal root ganglion. Inhibition of this upregulation alle-
viated the development and maintenance of CCI-induced 
mechanical and thermal pain threshold hypersensitivity 
[56]. Therefore, Cebpb may become a new drug target of 
NP by regulating ARDEGs. So far, there is no direct evi-
dence for the role of rno-miR-140-5p and rno-miR-877 
in NP. However, miR-140-5p could target CLDN2 to pro-
mote cell viability and inhibit apoptosis, autophagy and 
inflammation in lipopolysaccharide induced sepsis model 
[57]. Thus, the miR-140-5p/Sirt2 axis may be involved 
in the occurrence and development of NP. In our study, 
we also found that several potential therapeutic com-
pounds corresponding to Sirt2 and ST7 were identified 
for neuropathic pain. Among these potential therapeu-
tic compounds, Valproic acid and Sirtinol deserved our 
attention. Valproic acid (VPA) is a recognized antiepi-
leptic drug (AED). At present, AEDs are widely used in 
the treatment of NP, and they inhibit voltage-depend-
ent sodium channels, increase serotonergic inhibition, 
reduce N-methyl-D-aspartate (NMDA) receptor-medi-
ated glutamate excitation and enhance gamma amin-
obutyric acidergic (GABA) signaling for therapeutic 
effect [58]. Another study also revealed that VPA had 
good efficacy in the SNL model and equal potency in the 
inflammatory pain model [59]. Sirtinol is an inhibitor of 
the Sirtuin family of nicotinamide adenine dinucleotide 
(NAD)-dependent deacetylases in saccharomyces cerevi-
siae [60]. Ming et al revealed that administration of sirti-
nol following traumatic reduced cytokine production in 
male rats, which further could attenuate the inflamma-
tory response [61]. Thus, sirtinol may be a potential com-
pound for the relief of neuropathic pain, by inhibiting the 
inflammatory response, which may give us new insights 
into the treatment of neuropathic pain.

In the immune infiltration analysis results, we found 
that Sirt2 was positively correlated with Eosinophil, 

Effector memeory CD8+ T cell, myeloid-derived sup-
pressor cells (MDSC). Furthermore, immune score was 
statistically significant with different groups, suggesting 
the changes of immune microenvironment in NP. Ifergan 
I et al. have revealed that effector memory CD8+ T lym-
phocytes were more inclined to migrate between blood–
brain barrier endothelial cells than non-effector memory 
cells, which facilitated CD8+ T lymphocyte participa-
tion in immune responses in the central nervous system 
[62]. The exact role of CD8+ T lymphocytes in the cen-
tral nervous system (CNS) inflammation remains con-
troversial, but a study has revealed that CD8+ T cells are 
closely associated with demyelinated axons [63]. Another 
study has shown that Eosinophils are located near nerves 
during chronic inflammation and that activated eosino-
phils can induce nerve damage neuropeptide release [64]. 
P2X4, a sensitive purinergic receptor, is highly expressed 
on eosinophils. And P2X4 can regulate neuropathic pain 
through brain-derived neurotrophic factors and partici-
pate in the inflammatory in response to high ATP release 
[65]. Meanwhile, our study also found that Sirt2 was 
positively correlated with eosinophils, and the expres-
sion of Sirt2 was up-regulated in NP, suggesting that Sirt2 
may be a promoter of neuroinflammation and may be 
involved in immune-related signal regulation.

There are some limitations that must be taken into 
account in the study. At first, autophagy-related genes 
were involved in our study may be incomplete. Further-
more, in vivo and in vitro experiments were not used to 
validate our results. Finally, non-tumor diseases often 
cannot perform clinical correlation studies and prognos-
tic analyses due to lack of clinical and prognostic data. 
Despite these limitations, the present transcriptomic 
study can serve as an important molecular basis and pro-
vide reliable molecular biomarkers for the diagnosis and 
prognosis of NP. It also prepares for the exploration of 
new therapeutic targets for NP.

Conclusions
In conclusion, we found that Sirt2 and ST7 may be 
potential therapeutic targets for treatment with neu-
ropathic pain, providing more evidence about the cru-
cial role of autophagy in neuropathic pain. And the 
miR-140-5p and Cebpb were important regulators at 
the post-transcriptional and transcriptional level in the 
mechanism of neuropathic pain. Immune cell infiltra-
tion may play a vital role in the development of neu-
ropathic pain, especially Effector memory CD8+ T 
lymphocytes and Eosinophils. Our study may help to 
elucidate the pathogenesis of neuropathic pain. How-
ever, more research and experiments are needed to 
illustrate the functions of these molecules.
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