
Nakamura et al. Hereditas          (2024) 161:44  
https://doi.org/10.1186/s41065-024-00342-y

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Hereditas

Fine construction of gene coexpression 
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Abstract 

Background  Stage 4 neuroblastoma (NBL), a solid tumor of childhood, has a poor prognosis. Despite intensive 
molecular genetic studies, no targetable gene abnormalities have been identified. Stage 4S NBL has a characteristic 
of spontaneous regression, and elucidation of the mechanistic differences between stages 4 and 4S may improve 
treatment. Conventional NBL studies have mainly focused on the detection of abnormalities in individual genes 
and have rarely examined abnormalities in gene networks. While the gene coexpression network is expected to con-
tribute to the detection of network abnormalities, the fragility of the network due to data noise and the extraction 
of arbitrary topological structures for the high-dimensional network are issues.

Results  The present paper concerns the classification method of stages 4 and 4S NBL patients using highly accu-
rate gene coexpression network analysis based on RNA-sequencing data of transcription factors (TFs). In particular, 
after applying a noise reduction method RECODE, generalized topological overlapping measure (GTOM), which 
weighs the connections of nodes in the network structure, succeeded in extracting a cluster of TFs that showed high 
classification performance for stages 4 and 4S. In addition, we investigated how these clusters correspond to clinical 
information and to TFs which control the normal adrenal tissue and NBL characters.

Conclusions  A clustering method is presented for finding intermediate-scale clusters of TFs that give consider-
able separation performance for distinguishing between stages 4 and 4S. It is suggested that this method is use-
ful as a way to extract factors that contribute to the separation of groups from multiple pieces of information such 
as gene expression levels.
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Background
Neuroblastoma (NBL) is a pediatric malignancy with one 
of the worst prognoses. Although there have been many 
studies of NBL [1–5], the specific genetic abnormali-
ties that may be exploited for targeted therapy have not 
been discovered, except in specific cases, such as ALK 
mutations. In general, pediatric solid tumors, such as 
NBL, have fewer genetic mutations compared with other 
malignancies; however, many chromosomal deletions and 
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duplications (segmental chromosomal aberrations) occur, 
which indicates abnormalities in the genomic system.

Stage 4 (st4) NBLs with metastasis tend to be resistant 
to chemotherapy; however, there is a unique type of st4 
NBL with a good prognosis, known as “special stage 4” 
(4S). It has several characteristics, such as an age at diag-
nosis of 1.5 years and less, and metastatic sites that are 
limited to the liver, skin, and bone marrow. Of these, the 
most interesting feature is that it spontaneously regresses 
[2, 6]. Therefore, identifying genetic and genomic differ-
ences between st4 and 4S may lead to the development of 
new treatments, such as regression induction therapy [7].

Whole exome sequencing could not reveal recurrent 
driver gene mutations in half of the NBL tumors [1, 8], 
and previous papers reporting on the characteristics of 
4S did not agree on the causative gene expressions [9–
11]. These findings indicate that it is difficult to elucidate 
the mechanism of tumorigenesis and regression medi-
ated by NBL via the current methods, which rely heavily 
on identifying genetic abnormalities.

Therefore, we conducted a gene coexpression network 
(GCN) analysis to analyze the genomic system of NBL 
stages 4 and 4S. Usually, when comparing two different 
tissues or conditions, a gene expression analysis, such 
as DESeq2, is performed. However, this method com-
pares differences in a single gene between diseased or 
healthy tissues, and important information regarding the 
gene system (e.g., the correlations between two genes) is 
lacking [12, 13]. We performed GCN analysis (GCNA) 
to identify delicate topological structure differences 
between st4 and 4S. GCNA is widely used (e.g. [14]) to 
detect gene clusters that classify between two states, such 
as normal and malignant tumors, and to detect respon-
sible genes extracted by comparing two networks. But 
thus far it has several limitations. First, there is a problem 
with noise removal and a problem with the removal of 
low-expression genes in network construction [15]. Usu-
ally, genes with low expression are removed (e.g., a cut-
off of the bottom 25% of the average expression level, etc. 
[12, 16–18]). However, during the construction of GCN 
graphs, blind deletion of genes with low expression may 
affect the morphology of the graph [15, 19]. Therefore, 
an appropriate cutoff value should be established [20]. 
Furthermore, a naive removal of low-degree nodes in a 
graph may disrupt its functional structure [21]. Second, 
the information in the GCNA graph is not fully utilized, 
resulting in an immature topological interpretation. The 
GCNA approach that has been done so far has been used 
to identify hubs and gene clusters [22, 23]. Some papers 
discuss to the detailed connections of genes in network 
(e.g. [14]), but they concluded to focusing on individual 
genes or mi-RNAs and did not pay attention to the detec-
tion of the topological aspects.

The gene ontology (GO) of each module was also ana-
lyzed in previous studies to explore its biological signifi-
cance; however, when comparing two cancers of the same 
origin, such as st4 and 4S, the main gene networks were 
almost identical. In other words, critical differences may 
reside in node connections (edges) and not in the nodes 
themselves [22, 24]. To identify such subtle GCN differ-
ences, the construction of a GCN graph must be carefully 
designed.

To construct such a highly accurate and sophisticated 
GCN graph, as mentioned above, the data must be 
denoised. We used the resolution of the curse of dimen-
sionality (RECODE) method [25]. In addition, because 
conventional GCN, which analyzes only adjacent nodes 
(genes) with the default settings, cannot interpret the 
topological meaning of the entire graph, we used the gen-
eralized topological overlap measure (GTOM) method 
[26]. The reason for adopting GTOM is that, when the 
understanding of characteristic subnetworks is impor-
tant (that may happen in distinguishing 4 and 4S), it is 
more appropriate to evaluate not only neighboring nodes 
but also nodes in k-th connections ahead. Furthermore, 
to handle the well-known problem of errors in RNA-
sequencing, we employed a specifically designed denois-
ing method of RECODE (not conventional methods by 
low-expression data cutoff) for the following reasons. 
One of the parameters in constructing a network from 
the correlation matrix is the cutoff value for the correla-
tion coefficient, which determines which pair of two TFs 
is connected. Although noise elimination may not have a 
large effect on pairs of nodes whose correlations are far 
from the cutoff value (because nodes with small corre-
lations are cut from the beginning and nodes with large 
correlations are not cut by a small change), near the cut-
off value, the effect by noise elimination seems noticeable 
and may significantly change the essential part of the net-
work structure. Therefore, we thought it would be more 
desirable in our analysis to use a method that reduces 
the data variance such as RECODE, rather than the con-
ventional denoising method that simply cuts off the low-
expression data.

Transcription factors (TFs) can influence each other 
to form a network, but non-TF genes cannot be directly 
involved in the network [27]. Therefore, it is believed 
that transcription factors form the core network. It has 
also been rigorously proven in a mathematical model of 
gene networks [28] that the network system follows the 
“core” of the network system. Based on this observation, 
we analyzed GCN construction using only TFs, which 
should contribute to the core of the network system.

In summary, we performed GCN analysis using 
RECODE and GTOM. The biological significance of the 
obtained subnetworks was vague in the GO analysis, but 
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could be clearly demonstrated by comparison with the 
adrenocellular single-cell RNAseq analysis of fetal mouse 
adrena glands and the NB enhancer classification.

Finally, it should be mentioned that the purpose of this 
study is “to find factors for classifying 4 and 4S as fea-
tures in the gene network” and “not to propose a new 
classification method or to compare its classification 
performance with existing classification methods”. Con-
ventional network analysis of NBL is insufficient for such 
high-precision graph analysis, and this study is novel in 
the sense that the subnetworks obtained by topological 
analysis were meaningful.

Method
Preparation
RNA expression analysis, including GCN analysis, was 
performed based on RNA-sequencing data from 148 
primary neuroblastoma tumors sequenced through the 
TARGET (Therapeutically Applicable Research to Gen-
erate Effective Treatments) initiative (phs000467.v1.p1.) 
and 498 samples from GEO (Gene Expression Omnibus 
) as accession ID: GSE49711 [29]. The number of patients 
was 127 for st4 and 21 for 4S, and the number of genes 
was 31,849 for TARGET. The number of patients was 183 
for st4 and 53 for 4S, and the number of genes was 60,778 
for GSE49711. In this study, only 1,531 transcription fac-
tors were used based on [30].

The data are downloaded via Genomic Data Com-
mons (GDC) portal site [31], using the Cohort Builder 
to create a cohort of TARGET-NBL cases (apply fil-
ter Project=TARGET-NBL ), then Navigate to the 
Repository and add the following filters: 15 Work-
flow Type=STAR - Counts, Access=open. This 
should result in 162 files for 155 individuals [32]. From 
this 155, 148 data sets were selected for which clinical 
data were available. The details of preprocessing are in 
[33]. In summary, the mRNA Analysis pipeline begins 

with the Alignment Workflow, which is performed using 
a two-pass method with STAR. Following alignment, the 
raw counts files produced by STAR are normalized using 
three commonly used counts transformations (FPKM, 
FPKM-UQ, and TPM) along with basic annotations 
as part of the RNA Expression Workflow. GENCODE 
v36 was used for gene annotation. The list of down-
loaded files is in additional file ( 20230518_DWNLD_
data_NB_dbGAPfile_list_GDC_NBL ). The data of 
GSE49711 is downloaded via GEO [34] as a file name of 
GSE49711_SEQC_NB_MAV_G_log2.20121127.
txt.gz. Due to patient privacy issues the raw data was 
not submitted here. The preprocessing of data was per-
formed via Magic-AceView pipeline, gene expression is 
measured in sFPKM and transformed to log2 (in details 
see [29]). Clinical data is also downloaded via GDC por-
tal site, see Data availability.

Analysis flow
Our analysis flow with RECODE and GTOM is designed 
as follows (summarized in Fig.  1). (1) RNA-sequencing 
data from the 148 primary NBL tumors were input. (2) The 
RECODE method was applied to the RNA-sequencing data 
to obtain data (whose size is the same as the original data) 
with noise reduction to avoid the curse of dimensionality. 
(3-i) An adjacency matrix was computed from the result-
ing data of step 2 with a given threshold of 0.7. (That is, the 
(i,  j)-element of the matrix is 1 if the correlation between 
the i-th TF and the j-th TF is 0.7 or greater and 0 other-
wise.) (3-ii) The GTOM method was applied to the matrix 
of step 3-i to obtain a matrix (whose size is the same as the 
original matrix). (3-iii) The average linkage hierarchical 
clustering was performed on the matrix of step 3-ii using 
Ward’s method. (4-i) The co-expression network graph was 
drawn according to the matrix of step 3-i. (That is, the edge 
between i-th node and j-th node is drawn if and only if the 
(i, j)-element of the matrix is 1.) This was visualized by the 

Fig. 1  Detailed steps of the study. ① Data input: RNA-sequencing data from 148 primary neuroblastoma tumors. ② Noise reduction: applying 
RECODE to avoid a curse of dimensionality. ③ Clustering: transformation into an adjacency matrix, calculation of modified matrix by GTOM, 
and hierarchical clustering by using Ward method. ④ Co-expression network construction: visualization based on the measures by GTOM using 
python package, igraph. ⑤ Evaluations: several evaluations were performed to discuss obtained clusters
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Python package igraph. (4-ii) Each node of the graph of 
step 4-i was colored according to the clusters in step 3-iii. 
(5) Several evaluations were conducted to discuss the find-
ings in the co-expression networks. A brief description of 
each method is given below.

RECODE
RNA sequencing data are high-dimensional with sub-
stantial technical noise. This causes a statistical problem 
known as the curse of dimensionality. In the context of 
single-cell RNA sequencing (scRNA-seq), Imoto et  al. 
[25] devised a noise reduction method known as the 
resolution of the curse of dimensionality (RECODE) for 
high-dimensional data with random sampling noise. It 
was developed based on high-dimensional statistics. 
RECODE does not involve dimensional reduction and 
recovers the expression values for all genes, including 
genes with low expression. This enables precise delinea-
tion of cell fate transitions and identification of rare cells 
with complete gene information.

We explain the RECODE method more precisely to 
show its high versatility because we apply RECODE 
in a slightly different context from [25], that is, in 
the context of RNA sequencing. Given a matrix date 
X = {xij}1≤i≤d,1≤j≤n ∈ R

d×n (in our case, d is the number 
of TFs and n is the number of patients), RECODE with 
a parameter ℓ ∈ {1, 2, . . . , d} defines the modified date 
matrix Xℓ ∈ R

d×n by the composition of three opera-
tions, namely, the principal component analysis (PCA) 
coordinate change, a modification/cutoff of eigenval-
ues with parameter ℓ , and the inverse PCA coordinate 
change:

Here, ϕX is the PCA coordinate change given by

with the mean matrix X  of X (i.e.  each (i,  j)-element 
of X  is the mean xi1+···+xin

n  of i-th row data of X) and 
the orthogonal matrix UX = (uX ,1, . . . ,uX ,d) consist-
ing of eigenvectors of the sample covariance matrix 
SX = 1

n−1 (X − X)(X − X)T (i.e.  SXuX ,i = �X ,iuX ,i with 
�X ,1 ≥ �X ,2 ≥ · · · ≥ �X ,d ). Hence, ϕ−1

X (Y ) = UXY + X  . 
Furthermore, �X is a diagonal matrix with diagonal 
entries by eigenvalues �X ,1, . . . , �X ,d and �̃X is a diago-
nal matrix with diagonal entries by the modified values 
�̃X ,1, . . . , �̃X ,d given by

X̃ℓ = ϕ−1
X

(
�̃

1
2
X�

− 1
2

X ϕX (X)

)
.

ϕX (X) = UT
X (X − X)

��X ,i =





�X ,i −
1

D−i+1

D�
j=i+1

�X ,j if i ≤ ℓ

0 if i > ℓ

with the PCA dimension D = min{n− 1, d} . There are 
two types of the curse of dimensionality, and the first one 
is described as the increasing effect of noise on the data 
variance in the limit d → ∞ . RECODE regards the first 
ℓ principal components (PCs) as the essential part and 
the other PCs as the noise part. In [25], it is proven that 
there is an ℓ to minimize the effect of noise on the data 
variance. We also employed the optimal ℓ in our compu-
tation. The second type of the curse of dimensionality is 
seen in the non-convergence of �X ,i with noise to the cor-
responding eigenvalue without noise in the limit d → ∞ 
in the case d ≫ n , which the classical PCA also suffers 
from. However, it is proven in [25] that the modified 
value �̃X ,i with noise converges to the eigenvalue without 
noise.

GTOM
Network methods are useful for representing the interac-
tions of genes. Yip and Horvath [26] proposed GTOM(k) 
(generalized topological overlapping measure of order 
k + 1 ), which is a clustering method that uses not only 
the first-order connections (i.e., the adjacent connections 
between 2 nodes), but also a measure of topological over-
lap based on (k + 1)-th order neighborhoods. More pre-
cisely, the matrix T = {t

(k)
ij }1≤i,j≤d obtained by GTOM(k) 

from an adjecency matrix A = {aij}1≤i,j≤d is determined 
by the formula

where Nk+1(i) is the set of nodes (excluding i itself ) that 
are reachable from i within a path of length k + 1 and |A| 
is the cardinality of a set A. Notice that even in the case 
aij = 0 , if the number of paths of length k + 1 from the 
i-th node to the j-th node is large, then t(k)ij  can be close 
to 1. To quantify the separation ability of GTOM(k) in a 
given decomponsition {1, 2, . . . , d} = A ∪ B of all nodes 
by disjoint groups A and B , we also consider the meas-
ure of mean difference GTOMdiffk(A,B) of order (k + 1) 
(with respect to A , B ) given by

where GTOMscorek(C,D) for groups C , D in {1, 2, . . . , d} 
is the measure of interconnectedness of C and D given by

Since high values of GTOMdiffk indicate a good sepa-
ration between the two groups A and B , we employ k as 
the value that maximizes GTOMdiffk.

t
(k)
ij =

{
|Nk+1(i)∩Nk+1(j)|+aij

min{|Nk+1(i)|,|Nk+1(j)|}+1−aij
if i �= j

1 if i = j,

GTOMdiffk(A,B) = GTOMscorek(A,A)−GTOMscorek(A,B),

GTOMscorek(C,D) =

∑
(i,j)∈C×D, i �=j t

(k)
ij

|{(i, j) ∈ C ×D : i �= j}|
.
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Gene Ontology (GO) and cell signature analyses
The PANTHER Overrepresentation Test (Released 
20230705) [35–37] was used for ontology-based biologi-
cal process analyses of TF clusters. Gene signature analy-
sis of each cluster was performed in two ways according 
to previous studies. One was a comparison with two 
types of NBLs classified by superenhancers, and the other 
was a comparison with single-cell RNAseq of fetal mouse 
adrenal cells. Van Groningen et  al. showed that Neuro-
blastoma is composed of two super-enhancer-associated 
differentiation states [38]. Furthermore, super-enhancer-
associated TF networks underlie lineage identity. NBLs 
are epigenetically classified as adrenergic (ADRN) and 
mesenchymal (MES) and each is regulated by independ-
ent superenhancers.

Hanemaaijer et  al. conducted a single-cell RNAseq 
analysis of fetal mouse adrenal glands at each devel-
opmental stage and the genes that characterized each 
cell were identified [39] (see Additional file  1). They 

classified fetal mouse adrenal cells into five groups: cor-
tex, medulla, endothelium, stroma, and immune, and 
further divided them into subgroups according to their 
differentiation stage. We counted and tabulated which of 
these signatures the transcription factors in our cluster 
corresponded to.

Results
Gene correlations for clustering
We first calculated the Pearson correlation coefficient 
between each pair of 1,531 TFs in the downloaded data, 
and created a 1531× 1531 correlation matrix. Figure 2 
displays the correlation matrix as a TF-GCN graph, in 
which the nodes consist of 1,531 TFs and each edge 
between the nodes is drawn if the correlation between 
the corresponding TFs is 0.7 or greater. The upper fig-
ure in Fig. 2 displays the matrix as a network graph. In 
the graph, TFs that have fewer than five connections 
with other TFs are not displayed. The lower figure in 

Fig. 2  The upper figure displays the matrix as a network graph with RECODE, in which the nodes consist of 1,531 TFs and each edge 
between the nodes is drawn if the correlation between the corresponding TFs is 0.7 or greater, where TFs that have fewer than five connections 
with other TFs are not displayed. The color of each node is determined by hierarchical clustering of the matrix, which is calculated as A: GTOM(0), B: 
GTOM(1), and C: GTOM(2). The lower figure displays the clustering heatmap of each GTOM
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Fig.  2A is an adjacency matrix of the TFs. Each entry 
is 1 if the corresponding correlation coefficient is 0.7 
or greater and 0 otherwise. Note that hierarchical clus-
tering is performed for each matrix using the Ward 
method.

The TF-GCN graph was used to analyze the graph 
structure. In this case, the GCN was reconstructed by 
GTOM analysis (GTOM-GCN) to focus on the robust 
topological structure of the graph. In Fig.  2, the matrix 
calculated by GTOM(0) (the adjacency matrix) and its 
cluster analysis results are shown in A, and these objects 
calculated by GTOM(1) and GTOM(2) are drawn in B 
and C, respectively. Furthermore, we performed a hier-
archical cluster analysis for GTOM-GCN via the Ward 
method and divided the TFs into five major clusters 

(colored red, green, cyan, magenta, and blue). The num-
ber of clusters used in this analysis was five, as several 
indices (e.g. the silhouette coefficient) were used as refer-
ences, and a characteristic subnetwork was found in the 
network graph using GTOM(2). The number of TFs in 
each cluster is listed in Table 2.

The red cluster was strongly related to the nodes within 
it. The cyan cluster is the same. The green and magenta 
clusters were related to the red and cyan clusters, but 
they exhibited a weak intercorrelation within their own 
clusters. In the graphical display, the red cluster is sur-
rounded by green and magenta clusters. The blue cluster 
was considered to be a collection of TFs that were not 
correlated with other TFs. Table  2 also shows that the 
blue cluster contains more TFs with low expression levels 
than the other clusters.

The reasons for giving a cutoff value of 0.7, a number of 
clusters of 5, and GTOM(2) as the basis for this study are 
described below. As shown in the figure (see Additional 
file  7), the number of clusters 2 or 3 is appropriate by 
commonly used indices such as silhouette coefficient, but 
since the purpose of this experiment is to extract charac-
teristic subclusters, the number of clusters is set to 4 or 5 
in order to divide the data into a larger number of clus-
ters to the extent that it is meaningful. Then, the GTOM-
score was calculated for cutoff values in range [0.5, 0.9] 
and k = 0, 1, 2, 3 , to quantitatively confirm the relation-
ship between the clusters. For example, the Table 1 shows 
the GTOMscores for the cutoff value of 0.7, the number 
of clusters of 5, and GTOM(2).

The diagonal component is the connectivity within 
each cluster, showing that red and cyan are strongly con-
nected. The green cluster is moderately connected to 

itself but is strongly connected to red, magenta is reason-
ably strongly connected to red, and blue is weakly con-
nected to both clusters. We calculated the GTOMscore 
for several parameters in order to find a network with a 
reasonably distributed number of nodes in each cluster, 
and we find a cutoff value and an index k as the one that 
well reflects the following three characteristics:

•	 More than two distinct core networks (e.g. red, cyan)
•	 Subnetworks contributing to the core network (e.g. 

green, magenta)
•	 Networks with some other characteristics (e.g. blue)

To find appropriate parameters, we further (introduce 
and) calculate the total score of GTOMscores defined by

where C is the numbered set of all clusters obtained by 
the clustering, dC is the total number of pairs of different 
clusters (i.e.  |{(i, j) ∈ C2 : i < j}| ), Gk (i, j) = GTOMscorek(Ai ,Aj) 
(denoting by Ai the set of all nodes in the i-th cluster), 
and ri is the ratio of the number of nodes in the i-th clus-
ter (i.e.  |Ai|∑

j |Aj |
 ). By this equation, we can find the charac-

teristic clusters. More precisely, the first term 
Gk(i, i)Gk(j, j)(1− Gk(i, j)) becomes higher if the two 
clusters i and j are different core networks, and the sec-
ond term Gk(i, i)(1− Gk(j, j))Gk(i, j) becomes higher if 
some subnetwork has a weak connection to itself, but 
strongly connected to i. The upper left graph in Fig.  4 
shows the score Sk for the data with RECODE, 5 cluster 
and the cutoff values from 0.5 to 0.9 and k = 0, 1, 2, 3 , 
displaying the case k = 2 gives higher scores. Moreover, 
we consider the standard deviation (SD) of the number of 
nodes in each cluster because even if the score Sk is high, 
if almost all nodes are included in one cluster, then we 
cannot detect a characteristic subnetwork. Figure 4 also 
shows the SD for each case, which displays that the SDs 
in the range of cutoff value [0.70, 0.76] are relatively low. 
Combining the score Sk and the SD, we determined the 
cutoff value 0.7 and k = 2 that realize the higher total 
score and the lower SD.

Finally, to confirm the effect of RECODE in Fig.  2, 
network graphs and clustering heatmaps obtained by 
GTOM without RECODE are illustrated in Fig. 3, where 
the colors are used for their respective clustering and 
have no relationship to Fig. 2. Moreover, total scores and 
SDs are summarized in Fig. 4.

Sk =
1

dC

∑

(i,j)∈C2, i<j

rirj
{
Gk(i, i)Gk(j, j)(1− Gk(i, j))+ Gk(i, i)(1− Gk(j, j))Gk(i, j)

}
,
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Patient correlations
To determine whether each TF cluster contributes to the 
difference between st4 and 4S, we created an intersample 
(Spearman) correlation graph using the TFs from each 
cluster. We used a Spearman correlation rather than a 
Pearson correlation because gene expression levels gen-
erally follow a power-law distribution [40].

Figure 5 presents a visualization of patient correlations 
as a network graph. No separation was observed in the 
cyan and blue clusters; however, the green cluster suc-
cessfully separated st4 and 4S. The red and magenta clus-
ters also separated st4 and 4S.

As quantitative evaluations, we calculate a difference 
GTOM score of group st4 and 4S, GTOMdiff0(4, 4S) , for 
each cut-off value of correlations from 0.50 to 0.95. Note 
that although we call it the GTOMscore, GTOM is not 
relevant since this score is calculated using the adjacency 
matrix (i.e. GTOM(0)). Figure 6 displays the scores, and 
we can find that the clusters red, green and magenta give 
a well-separation of st4 and 4S.

Comparison with other methods
To show that green and red clusters strongly influence 
the difference between 4 and 4S, we performed two con-
trol experiments and two well-used clustering methods. 
First, we calculated patient correlations with 239 TFs 
for which the difference in expression between st4 and 
4S was significant (adjusted p < 0.01 ) via the R package 
“DESeq2” (Fig. 7). Second, patient correlations were cal-
culated for 1,149 TFs in the third quantile (Q3) of gene 
expression levels (i.e., the TFs representing the bottom 
25% of the median gene expression levels were removed) 
(Fig. 7). Table 2 lists the number of TFs of interest in each 

Fig. 3  The upper figure displays the matrix as a network graph without RECODE, in which the nodes consist of 1,531 TFs and each edge 
between the nodes is drawn if the correlation between the corresponding TFs is 0.7 or greater, where TFs that have fewer than five connections 
with other TFs are not displayed. The color of each node is determined by hierarchical clustering of the matrix, which is calculated as A: GTOM(0), B: 
GTOM(1), and C: GTOM(2). The lower figure displays the clustering heatmap of each GTOM

Table 1  GTOMscores for cutoff value of 0.7, the number of 
clusters of 5, and GTOM(2)

Red Green Magenta Cyan Blue

Red 0.940 0.897 0.408 0.006 0.005

Green 0.586 0.182 0.003 0.003

Magenta 0.0639 0.0367 0.005

Cyan 0.809 0.036

Blue 0.014
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cluster. The GTOM scores between group st4 and 4S for 
the patient correlation network created by DESeq and Q3 
are also illustrated in Fig. 6.

Moreover, for reference as a comparison with other 
clustering methods, tSNE [41] and UMAP [42] which 
display the projection onto a two-dimensional plane were 
applied to the same data with RECODE, and the results 
are shown in Additional file  8 with the same colors as 
GTOM(2) with RECODE. It should be mentioned, how-
ever, that the choice of parameters is an important issue 
for these methods, but the parameters used in these 
experiments are the default ones in Python.

Annotation of clinical data on patient correlation networks
Next, we superimposed the following clinical data on 
the patient correlation graphs obtained above: prognosis 
vital state (dead/alive), diagnostic category (neuroblas-
toma, ganglioneuroblastoma nodular, ganglioneuroblas-
toma intermixed, unknown), MYCN amplification, and 
mitotic-Karyorrhectic Index (MKI). In Fig.  8, we exam-
ined which of these indicators was reflected in the graphs. 
In the classification by MYCN amplification status, some 
patients with amplification appeared as a subcluster in 

the green and red TF clusters but not in cyan. The vital 
state, the diagnostic category, and MKI did not show any 
characteristic clustering.

Biological characterization of 5 clusters
We performed a GO analysis of each cluster through an 
overrepresentation test using the PANTHER web app 
by submitting gene IDs (see Table 3 and Additional files 
2 for more detail). All 1,531 TFs were used as reference 
genes. The green and magenta clusters did not have GOs 
with an FDR (false discovery rate) less than 0.05 and a 
clear biological function. In the blue cluster, the top GO 
terms ranked by fold enrichment values were related to 
brain, nerve, and limb development. In the cyan cluster, 
the top GO terms were related to blood, immunity, blood 
vessels, and cardiac development. In the red cluster, all 
GO terms with an FDR < 0.05 were underrepresented. 
This may have occurred because of the large number of 
genes in the red cluster ( N = 556 ), which prevents the 
evaluation of GO characteristics compared with those of 
the entire group of TFs.

Since GO did not adequately characterize the clusters, 
we made the following two comparisons with previous 

Fig. 4  The total score of GTOMscore (blue line) and the standard deviation of the number of nodes in each cluster (green line) for the case 
with RECODE and 5 clusters (upper left), with noRECODE and 5 clusters (upper right), with RECODE and 4 clusters (lower left), with noRECODE and 4 
clusters (lower right)
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Fig. 5  The visualization of patient correlations as a network graph by using five clusters. Each node corresponds to a patient of ◦ for Stage 4 and � 
for Stage 4S, and it connects each pair of patients with a Spearman correlation greater than the value in parentheses
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studies. One was to evaluate the similarity to the two 
types of neuroblastoma (MES/ADRN) and the other was 
to evaluate the similarity to the 5 types of fetal mouse 
adrenal cells.

The two epigenetic classifications of neuroblastoma 
cells include the MES and ADRN types, each of which 
is regulated by an independent superenhancer. The MES 
type is presumed to have differentiated from the Schwan 
cell precursor (SCP), while the ADRN type is presumed 
to have differentiated from sympathetic neurons [38, 43]. 
MES-type signatures were mostly found in the cyan clus-
ter, followed by the blue cluster, but were rarely found in 
the red, green, and magenta clusters. ADRN-type signa-
tures belonged mostly to the red and green clusters and 
were also found in the blue cluster, but were rarely found 
in the cyan cluster (see Table 4 and Additional file 3).

Compared with the gene signatures of mouse fetal 
adrenal cells [39], the most abundant cluster of genes 
belonged to the medulla, consistent with the fact that 
NBL is a malignant tumor of adrenal medullary ori-
gin. Next, those belonging to the endothelial, stromal, 
and immune were found with equal amounts, but only 
a few were included in the cortex. While medulla signa-
tures were found equally in almost all clusters (except 
magenta), endothelial, stromal, and immune signatures 
were mostly found in the cyan cluster (see Table  4 and 
Additional file 4).

Placement of HOX genes in GCN graphs
Since genes in intermediate networks such as the green 
cluster contain information that distinguishes st4 from 
4S, we examined what genes are contained in the green, 
magenta, and blue clusters that are off-center of the net-
work. We found that this intermediate network contains 
a large number of HOX genes, and we explored them on 
our graph.

HOX genes are marked on the TARGET-NBL co-
expressed gene graph (see Additional file 9A). The HOXA 
and B groups are at the edges of the cyan cluster (MES-
type NBL signature); the B group is also inside the cyan 
cluster, while the A group forms a slight distant from it. 
Group D differs from these in that it is located on the 
edges of the cyan cluster, but also on the edges of the red 
cluster (ADRN-type NBL signature). The HOXC group 
differs from these in that it clusters only in the vicinity 

Fig. 6  The graph of the difference of GTOM score between group st4 and 4S for the patient correlation network created for each cluster depending 
on the cutoff value. The two dotted lines represent the GTOMscore between groups st4 and 4S for the patient correlation network created 
by DESeq and the third quantile (Q3)

Table 2  Breakdown of the number of TFs in clusters classified 
by GTOM(2) and cutoff value 0.7, and the number of TFs in each 
cluster used in the control experiment (DESeq and third quartile 
(Q3))

# DESeq2 Q3

Red 556 65 (11.7%) 543 (97.7%)

Green 298 64 (21.5%) 259 (86.9%)

Magenta 68 11 (16.2%) 57 (83.8%)

Cyan 209 38 (18.2%) 142 (67.9%)

Blue 400 61 (15.3%) 148 (37.0%)

total 1531 239 (15.6%) 1149 (75.0%)
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of the red cluster. To see the effect of RECODE, we also 
created a graph without RECODE and examined the 
placement of HOX genes (Additional file 9B). The graph 
without RECODE appears to be more skewed with over-
all distortion. The arrangement of the HOXD group is 
more clustered in a part of the graph than with RECODE, 
and is not interspersed among the cyan and red clusters.

To see the reproducibility of the graph structure, the 
HOX genes were also marked on a graph generated with 
another set of data, GSE49711. The HOXA and B groups 
are clustered around the cyan cluster, which is consistent 
with the TARGET data, while in GSE49711, the place-
ment of the HOXD group on the graph differs from the 
TARGET data, creating distant clusters with no con-
nection between the red and cyan clusters (Additional 
file 10).

Reproducibility
To demonstrate the reproducibility of the results, we per-
formed the same experiment on GSE49711, which is a 

different set of data from TARGET. Note that the original 
data obtained for TARGET was TPM, while GSE49711 
was log2(1+ FPKM) . It would be appropriate to perform 
an inverse log transformation to convert FPKM to TPM 
before applying our method, but we cannot ignore the 
effect of round errors added by these transformations. In 
fact, if we apply RECODE after converting to TPM and 
perform a cluster analysis using GTOM(2) with a cutoff 
value of 0.65, we obtain the results in Fig. 9 and Table 5.

The Fig.  9 shows that, despite a cutoff value of 0.65 
(lower than 0.7), many TFs belong to the blue cluster, 
which has few connections. Furthermore, the network 
structure around red, such as the green and magenta 
clusters observed in TARGET, was not reproduced. On 
the other hand, the combined clusters (red, green and 
magenta) and cyan clusters showed reproducibility of 
about 65.3% and 69.4% , respectively. By the Figure  9-C, 
the GTOMdiff, which distinguishes between st4 and 4S, 
also reproduced that the combined cluster gives better 
accuracy.

Fig. 7  Upper network graphs are from patient Spearman correlations of TFs for which the difference in expression between st4 and 4S 
was significant (adjusted p < 0.01 ) according to DESeq. Lower network graphs are from patient Spearman correlations of TFs in the third quartile 
(Q3) of gene expression levels. Each node corresponds to a patient of ◦ for Stage 4 and � for Stage 4S, and it connects each pair of patients 
with a Spearman correlation greater than the value in parentheses
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Discussion
We analyzed NBL using highly accurate and designed 
GCN graphs created by RECODE and GTOM, which 
consisted of only TFs. By comparing st4 and 4S, we 
attempted to clarify what causes the spontaneous regres-
sion of NBL.

When a characteristic subnetwork is extracted from 
a network consisting of an adjacency matrix of TFs, 
well-characterized clustering cannot be achieved using 

information only from adjacency (1-step neighboring 
nodes) (Fig. 2A). Figure 2C shows that the GTOM (mul-
tistep neighboring nodes) was valid. In fact, five charac-
teristic subnetworks were identified after the calculation 
of the overlapping measure from the information of the 
nodes connected within 3 steps (i.e., GTOM(2)), and 
clustering of the matrix was created from the overlapping 
measure.

The red and cyan clusters exhibited strong inter-
nal connections; the green clusters had weak internal 
connections but strong connections with the red; the 
magenta cluster had even weaker connections and was 
located around the red and green, whereas the blue clus-
ters showed weak overall connections. The green clus-
ter surrounded the red cluster, and the magenta cluster 
further surrounded it. Another feature was that the cyan 
cluster had few connections with the red, green, and 
magenta clusters.

Figure  5 shows that the red or green cluster clearly 
indicates TF separation between st4 and 4S. Notably, 
4S patients were strongly correlated (0.95 for the green 

Fig. 8  Each node in the upper network graphs corresponds to a patient, whose vital prognosis state is ◦ for Alive and � for Dead. Each node 
in the lower network graphs corresponds to a patient whose MYCN state is indicated by ◦ for not amplify, � for amplify, and � for unknown. It 
connects each pair of patients with a Spearman correlation greater than the value in parentheses

Table 3  Characteristics of the GO terms in each cluster. See 
Additional file 2 for the detail of the list of GO

GO biological process

Red under-representation

Green no significant GO

Magenta no significant GO

Cyan pigmentation, fat cell, B cell, insulin 
receptor signal, smooth muscle

Blue neuron, kidney development, helper-T
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cluster and 0.94 for the red cluster). On the other hand, 
there was no clear separation by the cyan cluster, indicat-
ing that the transcription factors contributing to the sep-
aration of st4 and 4S are contained in the red and green 
clusters.

Table 2 shows that TFs with significant differences in 
DESeq (i.e., those with large differences in expression 
between st4 and 4S) did not belong biasedly to a spe-
cific cluster. Moreover, Fig. 7 shows that in the patient 
correlation graph with such TFs, there is no clear 

Table 4  Breakdown of TFs classified by NBL types and Mouse fetal adrenal cells belonging to each cluster

NBL types Mouse fetal adrenal cells

MES ADRN cortex medulla endothel stroma immune

Red 1 10 4 22 5 5 1

Green 2 13 6 18 12 7 6

Magenta 1 3 2 8 3 2 0

Cyan 28 2 9 21 28 24 30

Blue 8 10 9 24 5 22 17

Total 40 38 30 93 53 60 54

Fig. 9  A The network graph created by TPM transformed GSE49711 data, in which the nodes consist of 1,531 TFs and each edge 
between the nodes is drawn if the correlation between the corresponding TFs is 0.65 or greater, where TFs that have fewer than five connections 
with other TFs are not displayed. The color of each node is determined by hierarchical clustering of the matrix, which is calculated as GTOM(2). B 
The clustering heatmap of GTOM(2). C The graph of difference of GTOMscore between group st4 and 4S for the patient correlation network created 
for each cluster depending on the cutoff value
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connected subgraph when the Spearman correlation 
exceeds 0.92 (which is less than the critical cutoff value 
of 0.94 for the red cluster and 0.95 for the green clus-
ter). Furthermore, Fig. 8 also shows that in the patient 
correlation graph of patients whose gene expression 
cuts off the bottom 25%, no clearly connected subgraph 
was observed when the Spearman correlation was 
greater than 0.90.

In the construction of a network graph, it is indispen-
sable to consider the effect of noise. Figure 3 shows the 
results of GTOM without applying RECODE. In this 
case, under the same cutoff value of 0.7, many TFs were 
included in the blue cluster, a gathering of less linked 
nodes to major clusters, in GTOM(2) (Fig. 3C). This may 
even remove the TFs contributing to the separation of st4 
and 4S, so careful handling of noise is essential. RECODE 
overcomes the curse of dimensionality by performing 
singular value decomposition, slightly reducing the por-
tion with large singular values and setting the portion 
with small singular values to 0 (considered noise), and 
restoring the original data from there. This suppresses 
the increase in variability due to noise with respect to the 
original data and produces the effect of increasing corre-
lations between TFs. This approach would allow correla-
tions within the same population to enhance each other, 
thereby enabling more accurate separation of populations 
with the same characteristics.

The biological significance of the 5 clusters found in 
the NBL TF network by GTOM with RECODE was ana-
lyzed. No specific terms were found in the blue, green, 
or red clusters in the GO analysis. Additionally, no 
terms were found that directly represented the adrenal 
medulla. In the gene signature that classifies NBLs into 
two types, ADRN and MES [38], ADRN signatures were 
predominantly in the red and green clusters, while MES 
were predominantly in the cyan cluster, showing mutu-
ally exclusive trends. The two major subnetworks in 
our graph (one is the union of red, green and magenta, 
the other is cyan) were thought to represent the ADRN 
and MES type superenhancer-regulated TF systems, 

respectively. Compared with fetal mouse adrenal cells 
[39], the TFs in our cluster had predominantly medulla 
signatures. The magenta and red clusters had almost 
exclusively medulla signatures; the green cluster con-
tained medulla and endothelial signatures; and the cyan 
cluster had each signature except for the cortex. Accord-
ing to these comparisons, the red, magenta, and green 
clusters are associated with the adrenal medulla and rep-
resent the characteristics of ADRN-type NBLs. The cyan 
cluster had a wide range of TFs, including endothelial, 
stromal, and immune cells, but with medulla character-
istics, and represented the characteristics of MES-type 
NBLs. TFs in the blue cluster without a network struc-
ture also had a wide range of features, including medulla, 
stromal and immune cells, and were characteristics of 
both the MES and ADRN types. Interestingly, while 
magenta and red were almost exclusively dedicated to 
the medulla, green also showed involvement with the 
endothelium, and this cluster showed the highest st4 and 
4S classification performance. The green cluster, while 
located on the periphery of red, also has connections to 
parts of cyan, suggesting that it may serve as a bridge 
between the mutually exclusive red and cyan networks.

Previous studies have indicated that high SCP cell sig-
natures are associated with a better NB prognosis [39]; 
however, based on our data, SCP signatures were only 
top-ranked in the cyan cluster. The cyan cluster did not 
significantly contribute to the distinction between st4 
and 4S, suggesting that the SCP signature is not signifi-
cant in the comparison of the properties of st4 and 4S. 
The cyan cluster was dominated by GO terms related to 
pigmentation, fat cell, B cell, insulin receptor signaling 
and smooth muscle. Moreover, adrenal cell signatures 
of this cluster were dominated by immune, stromal and 
endothelial TFs (see Additional file 5).

As the red and green clusters contained informa-
tion that distinguished the two stages, st4 and 4S, some 
mechanisms controlled by the clusters would cause 
spontaneous regression of NBLs. Although the classifica-
tion in our GCN graphs was consistent with some of the 

Table 5  Breakdown of the number of TFs in each cluster resulting from cluster analysis by TARGET and GSE49711. The rate in 
parentheses is the ratio of the number of nodes in each cluster in GES49711 to the number of nodes in each cluster in TARGET

TARGET\GSE Red Green Magenta Cyan Blue Total

Red 218 (39.2%) 127 (22.8%) 104 (18.7%) 3 (0.5%) 104 (18.7%) 556

Green 56 (18.8%) 17 (5.7%) 61 (20.5%) 4 (1.3%) 160 (53.7%) 298

Magenta 0 (0.0%) 1 (1.5%) 18 (26.5%) 4 (5.9%) 45 (66.2%) 68

Cyan 0 (0.0%) 3 (1.4%) 8 (3.8%) 145 (69.4%) 53 (25.4%) 209

Blue 0 (0.0%) 4 (1.0%) 15 (3.8%) 46 (11.5%) 335 (83.8%) 400

Total 274 152 206 202 697 1531
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conventional clinical indicators, such as MYCN ampli-
fication, it did not appear to be consistent with other 
indices. This suggests that the genetic background and 
clinical indicators do not match. It is particularly note-
worthy that some of the st4 tumor nodes resided near 
the 4S in the GCN graph drawn by the green cluster. This 
indicates that these st4 tumors have characteristics simi-
lar to those of 4S tumors.

HOX genes are not only involved in fetal organogen-
esis, but are also required for organ maintenance after 
birth and are also expressed in malignant tumor tissue. 
In malignant tumors, the expression of specific types of 
HOX genes is known to be related to malignancy and 
prognosis (see [44, 45]) and has some bearing on tumor 
character. Until now, studies of HOX genes in tumors 
have been limited to the abundance of individual gene 
expression and have not been systematically investigated. 
In this study, we showed that each group of HOX genes 
ABCD formed its own network in the co-expressed gene 
network. We also showed that the GSE49711 data, which 
was used for confirmation, is approximately reproduc-
ible. However, the HOXD cluster were not reproduced.

Although the reproducibility of the present results 
was verified using only one data set (GSE49711), it was 
confirmed that the combined clusters (red, green and 
magenta) and the cyan cluster appeared separately as a 
network structure, and it was reproduced that the com-
bined cluster is deeply involved in the separation of st4 
and 4S. On the other hand, the subnetwork structure of 
red surrounded by green and magenta was not repro-
duced. One reason for this is that, unlike the red and 
cyan clusters, which are strongly correlated, the green 
and magenta clusters are weakly connected, easily bro-
ken by noise and the change of cutoff values. Considering 
that the HOX genes are located in this weakly connected 
region, it may be necessary to eliminate the effects of 
noise or other factors to accurately capture the weak 
interactions between transcription factors.

Analysis of a large-scale population averages differ-
ent features, such as GO, while analysis of a small-scale 
population, such as detailed clustering, loses the essential 
network structure. Therefore, it is important to extract 
an intermediate-scale population with common features 
while maintaining the essential structure. However, it is 
generally not easy to find the optimal intermediate-scale 
population for separating two groups. This paper argues 
that GTOM with RECODE is effective in finding such an 
intermediate-scale population.

Limitations and future works
In this study, we confirmed the importance of the sub-
networks that characterize 4 and 4S using GTOM among 
network analysis methods. It remains to be seen whether 

other network analysis methods can detect similar 
subnetworks.

In addition, in this study, we conducted a thorough net-
work analysis on one set of NBL data, and only checked the 
reproducibility on the other set of data. Although we were 
able to obtain a certain degree of reproducibility, analysis 
of a larger number of data is an issue for the future.

We found the appropriate parameters in the view point 
of the GTOMscores and the SD of the number of nodes 
in clusters. Further study is needed on the validity of the 
evaluation formula for calculating the index for finding 
characteristic subnetworks from such GTOMscores and 
the search for better evaluation formulas.

The reproducibility of the results of the TARGET 
experiment was verified by GSE49711, but since there 
were differences in the data at the time of acquisition 
between the two, more accurate reproducibility veri-
fication is needed in the future. In particular, the inter-
mediate subnetworks we focused on, such as green and 
magenta clusters, are located in sparsely connected 
regions, suggesting that the network structure may be 
significantly affected by noise.

If a method to regulate HOX genes in time series is 
invented, it may be possible to interfere with tumor 
growth. In addition, if a technology for single-cell RNAseq 
from a single tumor mass is developed, it will be possible 
to create a gene co-expression network of an individual 
tumor and plan a tailor-made therapy by looking at the 
gene map. Such treatment will be less damaging to the 
whole body than the current “total cell kill” therapy.

Finally, we suggest that this method may be versatile 
enough to detect subnetworks that are caused by dif-
ferences between two different states produced by a 
large-scale network structure such as a gene network. 
Therefore, although the present experiments were con-
ducted on NBL st4 and 4S, applying the method to other 
cases created by gene networks, and finding the charac-
teristics of the original data or correlation networks for 
which the method is effective is also future works.

Conclusion
This study proposed a classification method for st4 and 
4S NBL using GCN analyses based on RNA sequenc-
ing data of TFs. Especially, the clustering method using 
GTOM was shown to be effective in finding a sub-net-
work of TFs to classify st4 and 4S. We also showed that 
the combination with the RECODE method was more 
effective. This method of clustering through an interme-
diate-scale network may be useful as a way to extract fac-
tors that contribute to the separation of the two groups 
for multiple pieces of information such as gene expres-
sion levels. The characteristics of the sub-networks of 
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TFs identified in this analysis were related to the NBL 
type (ADRN/MES) and mouse fetal adrenal cell signa-
ture. More detailed investigations of gene function based 
on these clusters will be required in the future. It is 
hoped that this analytical method will be used to recat-
egorize NBL and the development of new therapies.
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