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Abstract
Background  Previous studies have shown that bone mineral density (BMD) has a certain impact on scoliosis. 
However, up to now, there is no clear evidence that there is a causal association between the two. The aim of this 
study is to investigate whether there is a causal association between BMD at different body positions and scoliosis by 
two-sample Mendelian randomization (MR).

Methods  Genetic variants (SNPS) strongly associated with BMD (total body BMD (TB-BMD), lumbar spine BMD 
(LS-BMD), femoral neck BMD (FN-BMD), heel BMD (HE-BMD), and forearm BMD (FA-BMD)) were extracted from GEFOS 
and genome-wide association analysis (GWAS) databases SNPs) were used as instrumental variables (IVs). Scoliosis was 
also selected from the Finnish database as the outcome. Inverse variance weighting (IVW) method was used as the 
main analysis method, and multiple sensitivity analysis was performed by combining weighted median, MR-Egger, 
MR Multi-effect residuals and outliers.

Results  IVW results showed that TB-BMD (OR = 0.83, 95%CI: 0.66–1.55 P = 0.13), LS-BMD (OR = 0.72, 95%CI: 0.52–0.99, 
P = 0.04), FN-BMD (OR = 0.74, 95%CI: 0.50–1.09, P = 0.13), FA-BMD (OR = 0.95,95%CI: 0.70–1.28, P = 0.75), HE-BMD 
(OR = 0.91, 95%CI: 0.77–1.08, P = 0.29). Sensitivity analyses showed no evidence of pleiotropy or heterogeneity 
(p > 0.05) (MR-PRESSO and Cochrane). The results were further validated by leave-one-out test and MR-Egger 
intercept, which confirmed the robustness of the study results.

Conclusion  In conclusion, the present study demonstrates that the causal role of genetic prediction of scoliosis 
increases with decreasing lumbar BMD. There was no evidence that BMD at the remaining sites has a significant 
causal effect on scoliosis. Our results suggest that the lumbar spine BMD should be routinely measured in the 
population at high risk of scoliosis. If osteoporosis occurs, appropriate treatment should be given to reduce the 
incidence of scoliosis.
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Introduction
Scoliosis is a complex three dimensional (3D) structural 
deformity characterized by more than 10° of scoliosis 
on coronal radiographs of the spine with axial rotation 
and sagittal deviation [1]. According to the presence or 
absence of a clear cause, it can be divided into idiopathic 
and non-idiopathic [2, 3]. The global prevalence ranges 
from 0.47–5.2% [4, 5]. Despite extensive experimen-
tal and clinical studies over the years, its etiology and 
pathogenesis remain poorly understood. The etiology 
theory involves genetics, biomechanics, nervous system, 
endocrine system, spinal cord growth and bone metab-
olism [6]. Previous studies [7–11] have suggested that 
decreased bone mineral density (BMD) and even osteo-
porosis play an important role in the pathogenesis of 
scoliosis, but these studies have not suggested a potential 
cause-and-effect relationship.

To determine the causal relationship between BMD 
and scoliosis, we conducted a two-sample Mendelian 
randomization (MR) Study using public genome-wide 
Association Study (GWAS) data to explore the associa-
tion. Mendelian randomization (MR) studies refer to the 
use of genetic variants (single nucleotide polymorphisms, 
SNPs) as instrumental variables (IVs) to infer causal asso-
ciations of exposure levels (such as biomarkers) with 
outcomes [12]. Because SNPS are randomly assigned at 

conception (according to Mendelian’s second law), envi-
ronmental confounders and disease states that develop 
later in life do not affect germline genetic susceptibil-
ity. Therefore, MR Limits bias due to confounding and 
reverse causality and allows causal inference [13, 14].

Methods
Study design
The flow of the study design is illustrated in Fig.  1. The 
IVs required for the MR Analysis must satisfy the fol-
lowing three assumptions [15–17]. (1) The IVs used 
were strongly associated with exposure (BMD at differ-
ent sites); (2) The selected IVs were not related to poten-
tial confounders; (3) IVs could affect the risk of outcome 
(scoliosis) only through exposure.

Data sources
Exposure data included total body BMD (TB-BMD), 
lumbar spine BMD (LS-BMD), femoral neck BMD (FN-
BMD), forearm BMD (FA-BMD), and heel BMD (HE-
BMD). Above all data from osteoporosis GEFOS genetic 
factors alliance (http://www.gefos.org/) and IEU Open 
GWAS (https:/​/gwas.m​rcieu.a​c.uk​/datasets/) summary 
statistics.

Scoliosis genetic statistics data from 2021 released R5 
FinnGen alliance (https:/​/r5.ris​teys.fi​nnge​n.fi/). The large 

Fig. 1  Schematic diagram of Mendelian randomization study
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GWAS in Finns contained 1168 cases and 164,682 con-
trols, which yielded 16,380,270 SNPs for analysis after 
adjusting for factors such as age, sex, and genotyping 
batch [18]. Ethical approval and informed consent were 
provided for the above data, and the writing process fol-
lowed the requirements of STROBE-MR, the reporting 
code for MR Studies. Data details are provided in Table 1.

Selection of IVs
The choice of IVs should conform to the above three 
assumptions. The SNPs (P < 5 × 10− 8) that were closely 
associated with BMD at the five sites were screened from 
the corresponding databases (Assumption 1). Second, 
SNPs pairwise correlation coefficients in linkage dis-
equilibrium (LD) must satisfy r2 < 0.001 and kb = 10,000 
to be considered independent (Assumption 2). In order 
to ensure that gene variants independently of potential 
confounders (Assumption 3), using PhenoScanner ​(​​​h​t​​t​
p​:​​/​/​w​w​​w​.​​p​h​e​n​o​s​c​a​n​n​e​r​.​m​e​d​s​c​h​l​.​c​a​m​.​a​c​.​u​k​/​​​​​) to screen 
and remove possible confounding factors. Known con-
founders that may be associated with the outcome (sco-
liosis) include vitamin D [23], age at menarche [24], body 
weight [25], BMI [26, 27], leptin [28], estrogen [29], mela-
tonin [30], etc. The strength of instrumental variables 
was estimated using the F-statistic, which was calculated 
as F = (R2/k)/([1 − R2]/[n − k − 1]). R2 represents the pro-
portion of variance explained by the exposed SNP tools, 
k represents the number of tools, and N represents the 
exposed sample size [31, 32]. F-statistics of less than 10 
were considered to indicate weak instrumental variable 
bias and were excluded [33]. These SNPs were then used 
as IVs to assess causality between exposure and outcome 
in the MR Analysis.

MR analysis
In this two-sample MR Design, we used the following 
five methods to analyze the causal association between 
BMD of different body parts and scoliosis separately 
[34–36]. These methods include inverse variance weight-
ing (IVW), weighted median (WM), simple median 
(SM), weighted median estimator (WME) and MR-Egger 
regression. Among them, IVW calculates the odds ratio 
(OR) as the primary method, which is typical and rou-
tine in MR, and the slope of the weighted regression of 
the outcome effect on the exposure effect represents the 

outcome estimate (with an intercept restricted to zero). 
In addition, the other four methods were used as tests for 
the robustness of the primary outcome. Heterogeneity 
of individual estimates of genetic variation was assessed 
using Cochran’s Q test. If Cochran’s Q P > 0.05 and there 
was no evidence of heterogeneity, the fixed effect IVW 
method was used. If there was significant heterogeneity 
(P < 0.05 by Cochran’s Q test), the random effects IVW 
method was used [37–39].

Sensitivity analysis
To ensure that IVs was independent of outcomes other 
than exposure, we used different approaches to exclude 
potential effects. Firstly, Pleiotropy residual sum and out-
lier (MR-PRESSO) was applied to test and calibrate the 
outliers of horizontal pleiotropy, and the outliers in IVs 
were removed [34]. We used MR-Egger regression to 
account for horizontal pleiotropy, with a P value of more 
than 0.05 for the intercept indicating the absence of hori-
zontal pleiotropy [40]. Horizontal pleiotropy was tested 
by drawing a funnel plot. If the funnel plot shows a sym-
metric shape, this usually means that there is no obvious 
pleiotropy.

Leave-one-out sensitivity test is to observe whether the 
results will change significantly after removing a specific 
SNP. If the results remain relatively stable after removing 
any SNP one by one, it indicates that the overall error line 
will change within a small range after removing any SNP. 
Specifically, each SNP was removed one by one, and then 
the meta-effects of the remaining SNPs were calculated, 
in which the influence of each SNP was separately evalu-
ated by IVW analysis and represented by forest plot.

Analysis software
Statistical analysis of all data was performed using R 
Studio (version 4.3.1), two-sample MR (version 0.5.7) 
and MR-PRESSO (version 1.0) software packages [41]. 
Results are presented as odds ratios (ORs) with 95%con-
fidence intervals (95% CI), and if p < 0.05 was considered 
statistically significant.

Results
Overall, we obtained SNPs that met the three assump-
tions of MR Analysis and could be used for MR Analy-
sis (Supplementary Table 1). In the heterogeneity test, all 

Table 1  Bone mineral density (BMD) GWAS data summary
GWAS ID Trait Consortium/ Sample size Trait Reference
ebi-a-GCST00 5348 TB-BMD GWAS meta-

analysis
56 284 16 162 733 Medina et al., 2018 [19]

ieu-a-982 LS-BMD GEFOS 28 498 10 582 867 Zheng et al., 2015 [20]
ieu-a-980 FN-BMD GEFOS 32 735 10 586 900 Zheng et al., 2015 [20]
ieu-a-977 FA-BMD GEFOS 8 143 9 955 366 Surakka et al., 2020 [21]
ebi-a-GCST00 6979 Heel-BMD GEFOS 426 824 13 705 641 Morris et al., 2019 [22]

http://www.phenoscanner.medschl.cam.ac.uk/
http://www.phenoscanner.medschl.cam.ac.uk/
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IVs did not show significant heterogeneity (p > 0.05), so a 
fixed effects model was used for the five-item MR Analy-
sis when calculating the IVW.

IVW results were TB-BMD (OR = 0.83, 95%CI: 
0.66–1.55, P = 0.13); LS-BMD (OR = 0.72, 95%CI: 0.52–
0.99, P = 0.04) FN-BMD (OR = 0.74, 95%CI: 0.50–1.09, 
P = 0.13); FA-BMD (OR = 0.95,95%CI: 0.70–1.28, P = 0.75); 
HE-BMD (OR = 0.91, 95%CI: 0.77–1.08, P = 0.29). The 
complete results of the five MR Analyses are shown 
in Table  2. MR Study found a negative causal relation-
ship between lumbar BMD and scoliosis (LS-BMD IVW 
OR = 0.72, 95%CI: 0.52–0.99, P = 0.04). There was no 
causal association between BMD at the remaining sites 
and scoliosis.

In the five MR Analyses performed, the P value for the 
intercept in the MR-Egger regression was higher than 
0.05 (Table  2). No outliers were found by MR-PRESSO 
test. MR-Egger intercept and MR-PRESSO analysis 

showed that there was no pleiotropy of the above expo-
sures on scoliosis, and there was no heterogeneity 
between them. In addition, the results of leave-one-out 
analyses performed and plotted show that no single SNP 
had an effect on the overall causal estimate (Fig. 2).

To further demonstrate the credibility of our find-
ings, we plotted funnel plots and scatter plots for visual 
assessment of horizontal pleiotropy and heterogene-
ity. The distribution of causal effects shown in the fun-
nel plot was basically symmetric and no obvious bias was 
observed (Fig.  3), and we found possible outliers in the 
IV of FN-BMD and FA-BMD in the scatter plot (Fig. 4). 
However, MR-PRESSO analysis showed no significant 
outliers (global test P > 0.05). Thus, the relationship 
between BMD and scoliosis provides insufficient support 
for horizontal pleiotropy. Reverse MR Analysis showed 
no causal relationship between scoliosis and BMD at the 
five sites (Supplementary Table 2).

Table 2  Results of mendelian randomization analysis
exposures
TB-BMD LS-BMD FN-BMD FA-BMD HE-BMD

SNPs, n 63 18 14 11 419
IVW OR 0.83 0.72 0.74 0.95 0.91

95%CI 0.66–1.55 0.52–0.99 0.50–1.09 0.70–1.28 0.77–1.08
P value 0.13 0.04 0.13 0.75 0.29

Weighted median OR 0.76 0.57 0.78 1.22 1.01
95%CI 0.54–1.07 0.36–0.90 0.47–1.31 0.82–1.83 0.76–1.37
P value 0.12 0.01 0.36 0.32 0.90

Weighted mode OR 0.60 0.52 0.78 1.26 1.11
95%CI 0.33–1.10 0.23–1.20 0.37–1.67 0.80–1.96 0.81–1.51
P value 0.10 0.14 0.53 0.33 0.51

MR Egger OR 1.43 1.17 2.02 1.22 1.06
95%CI 0.80–2.58 0.30–4.56 0.29-14.00 0.51–2.91 0.80–1.42
P value 0.24 0.82 0.48 0.66 0.65

Simple mode OR 0.57 0.54 0.78 0.95 0.74
95%CI 0.26–1.25 0.22–1.33 0.34–1.73 0.40–2.20 0.38–1.46
P value 0.17 0.20 0.54 0.90 0.39

The boldface values represent the number of SNPS, the results of the main research methods, and the direct causal relationship (P < 0.05)

Fig. 2  Analysis results of leave-one method
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Discussion
So far, A variety of imaging methods have been used to 
measure BMD, such as dual-energy X-ray absorptiometry 
(DXA), quantitative ultrasound system (QUS), computed 
tomography, and quality control techniques (QCT) [42]. 
Many studies [43–46] have demonstrated the fact that 
BMD is reduced in patients with scoliosis by the above 
methods, but these studies have not proved whether 
there is a causal association between BMD at different 
locations and the presence or absence of scoliosis.

To the best of our knowledge, this is the first study to 
investigate the causal association between bone mineral 
density at different locations and scoliosis using two-
sample MR Analysis. Studies have shown that lower lum-
bar BMD is associated with a significantly increased risk 
of scoliosis in a European population. BMD at other loca-
tions was not causally associated with scoliosis.

Cheng et al. [47] demonstrated that low LS-BMD may 
play an important role in the etiology and pathogenesis of 
scoliosis through bone histological studies, and low BMD 
is caused by metabolic disorders leading to a reduction 
in the number of osteoclasts in the trabecular compart-
ment. Through DNA analysis of 198 girls diagnosed with 
AIS, Suh et al. [48] found that vitamin D receptor (VDR) 

BsmI polymorphism was associated with LS-BMD in 
AIS girls, and low bone mass may affect abnormal spi-
nal growth patterns through VDR gene BsmI locus 
polymorphism.

The above studies have proved that LS-BMD plays an 
important role in scoliosis through various ways from 
different perspectives, but they have not revealed the 
direct causal relationship between the two determined 
by genes. Our results have proved the above conclusions, 
and our results are not affected by confounding factors, 
so the results are more reliable.

Handa et al. [49] found that in a longitudinal observa-
tion study in mice, the growth plate was thickened and 
osteoblasts were reduced over time, suggesting that 
impaired endochondral ossification was the cause of 
scoliosis. Reduction of bone mineral density and degra-
dation of bone microstructure were also observed. This 
suggests that defects in endochondral ossification may 
impair growth, leading to scoliosis and decreased BMD. 
Therefore, more studies are needed in the future.

Our study has several strengths. Firstly, we applied the 
MR Method for the first time to investigate the causal 
relationship between BMD at different bone sites and 
scoliosis, avoiding potential confounding factors and 

Fig. 4  Scatter plot of causality between BMD and scoliosis

 

Fig. 3  Funnel plot of causality between BMD and scoliosis
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reverse causality. Second, our data were derived from the 
GWAS, FinnGen, and the GEFOS consortium summary 
data, and the results were consistent across different 
datasets, ensuring the reliability of our findings.

However, this study still has some potential limitations. 
First, the database used in this study was based on popu-
lations of European ancestry, and it is unclear whether 
the results would apply to populations of non-European 
ancestry. Second, BMD and prevalence of scoliosis vary 
by age and sex, but this study was analyzed based on data 
from GWAS pooled levels, which does not allow sub-
groups to assess effects according to different age and 
sex. Third, the results of this study showed a significant 
causal relationship between LS-BMD and scoliosis, but 
not TB-BMD, FN-BMD, HE-BMD or FA-BMD. Further 
MR Studies with larger sample sizes or randomized con-
trolled trials are needed to confirm these findings. Finally, 
Unobserved pleiotropy is a major limitation of MR Stud-
ies, which may influence conclusions that assess the asso-
ciation between genetically predicted BMD and scoliosis 
risk.

Conclusions
In conclusion, this bi-directional two-sample MR Study 
found a causal relationship between LS-BMD and sco-
liosis, but found no evidence of a causal relationship 
between BMD at other sites and scoliosis. The lower the 
LS-BMD level, the higher the risk of scoliosis.
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