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Abstract
Background Glioma is a malignancy with challenging clinical treatment and poor prognosis. Platelets are closely 
associated with tumor growth, propagation, invasion, and angiogenesis. However, the role of platelet-related genes in 
glioma treatment and prognosis remains unclear.

Results A prognostic risk model was established using nine platelet-related prognostic signature genes (CAPG, CLIC1, 
GLB1, GNG12, KIF20A, PDIA4, SULF2, TAGLN2, and WEE1), and the risk score of samples were calculated. Subsequently, 
the glioma samples were divided into high- and low-risk groups based on the median values of risk scores. scRNA-seq 
analysis revealed that the prognostic genes were primarily located in astrocytes and natural killer cells. The immune 
infiltration proportions of most immune cells differed significantly between high- and low-risk groups. Moreover, we 
found AZD7762 as a potential candidate for glioma treatment.

Conclusion Nine platelet-related prognostic genes identified as prognostic signatures for glioma were closely 
associated with the TME and may aid in directing the clinical treatment and prognosis of gliomas.

Highlights
 • Nine platelet-related prognostic signature genes were identified to establish a risk score and divide patients 

with glioma into high- and low-risk groups.
 • The risk score was an independent prognostic model, and a nomogram was constructed to verify the model.
 • Platelet-related prognostic signature genes could be used as targets for glioma therapy.
 • Tumor microenvironment was closely related to glioma treatment.
 • The drug AZD7762 is a potential candidate for glioma treatment.

Keywords Glioma, Platelet, Prognostic signature, Immune infiltration, Molecular docking

A novel risk model consisting of nine platelet-
related gene signatures for predicting 
prognosis, immune features and drug 
sensitivity in glioma
Sanlin Wei1,2, Junke Zhou3 and Bin Dong1,2*

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s41065-024-00355-7&domain=pdf&date_stamp=2024-12-19


Page 2 of 16Wei et al. Hereditas          (2024) 161:52 

Background
Gliomas are the most common primary cancer of the 
brain and account for approximately 44.6% of intracranial 
tumors [1, 2]. They share features of normal glial cells [3], 
and patients with gliomas often have limb dysfunction 
that seriously affects their quality of life. Glioblastoma 
(GBM) is among the most aggressive high-grade glio-
mas with a short survival time [4, 5]. Gliomas are gen-
erally derived from glial or precursor cells; their lesions 
are invasive and affect the surrounding tissue cells [6]. In 
addition, the molecular mechanism of gliomas is com-
plex, resulting in ineffective clinical treatments and poor 
prognosis [7]. While medical treatments, including sur-
gery, radiation, and chemotherapy, can reduce the risk 
of recurrence in gliomas, they result in an unsatisfactory 
overall survival rate because of the easy infiltration and 
diffusion, easy postoperative recurrence, and unfavor-
able prognosis of gliomas [8–11]. Therefore, it is critical 
to develop novel prognostic models and identify effective 
targeted drugs for patients with glioma.

Platelets, the smallest components of circulating blood 
cells, not only promote hemostasis and coagulation but 
also influence the growth, metastasis, and recurrence 
of tumors, thereby affecting patient prognosis [12–15]. 
Platelets and their growth factors can promote tumor 
metastasis by affecting tumor neovascularization [16], 
promoting tumor growth [17], and helping tumor cells 
evade natural killer (NK) cell recognition [18]. In turn, 
tumor cells can induce platelet activation and aggrega-
tion [18]. The interaction between cancer cells and plate-
lets can regulate the malignant progression of tumors. 
This interaction may arise from the unique anatomical 
characteristics of gliomas—solid tumors with abundant 
blood vessels. Therefore, investigating the potential func-
tion of platelets in gliomas is of utmost importance. Gli-
oma-associated cells may enhance immunosuppression 
in the glioma microenvironment through platelet regula-
tion, thereby promoting glioma growth, aggressiveness, 
and neovascularization [19]. Activated platelets regulate 
the immune response in gliomas by inhibiting the migra-
tion of regulatory T cells (Tregs) [20]. Current studies on 
platelets in glioma have mainly focused on the prognos-
tic value of the platelet-to-lymphocyte ratio and platelet 
counts [21–24]. Additionally, previous studies have stated 
that CD276 (B7-H3), GATA3, and galectin-3 enable 
prognosis prediction in glioblastoma [25], and that cor-
relation between lower balance of Th2 helper T-cells and 
lower expression of PD-L1/PD-1 axis genes also estimate 
prognosis in glioblastoma [26]. However, the association 
between platelet-related genes (PRGs) and glioma prog-
nosis remains unclear.

PRGs reportedly exhibit favorable prognostic guid-
ance effects in other types of tumors, such as pancre-
atic cancer [14, 27], lung squamous cell carcinoma [28], 

triple-negative breast cancer [12], esophageal cancer 
[29] hepatocellular carcinoma [30]. These findings dem-
onstrated the feasibility of establishing a prognostic 
model using PRGs for gliomas. In this study, we aimed 
to establish a prognostic risk model for immunotherapy 
in patients with glioma and describe the role of PRGs in 
the prognosis and tumor microenvironment (TME) of 
gliomas.

First, we performed a well-rounded analysis of genes 
available in public glioma datasets and identified plate-
let-related prognostic signature genes for gliomas using 
various bioinformatic tools. The expression of prognostic 
signature genes in the immune cells was also validated. 
We then established a platelet-related prognostic risk 
model based on these genes and verified it using multiple 
datasets. Subsequently, the tumor immune microenvi-
ronment and genetic mutations were analyzed, and the 
connection between the prognostic model and immune 
cells was determined. Finally, the active drug acting on 
the prognostic signature genes was identified. Our study 
can provide a novel role for glioma prognosis and inform 
personalized treatment for gliomas.

Methods
Data source
The profiles and clinical trait data of The Cancer Genome 
Atlas (TCGA) Glioblastoma Multiforme, TCGA Low 
Grade Glioma, and normal samples for Genotype-Tissue 
Expression were downloaded from the website of Uni-
versity of California Santa Cruz. After excluding samples 
with incomplete survival and clinical information, 1,141 
normal cases and 694 glioma samples were obtained. 
This TCGA cohort then served as a training set, whereas 
the Chinese Glioma Genome Atlas (CGGA) mRNA-
seq_325 and CGGA mRNAseq_693 datasets downloaded 
from the CGGA [31] database served as the validation 
sets. The single-cell RNA sequencing (scRNA-seq) data 
GSE138794 was obtained from the Gene Expression 
Omnibus [32] database.

We used “platelet” as the keyword to search the pub-
lic databases, including the Molecular Signatures Data-
base [33], AmiGo 2  (   h t  t p s  : / / a  m i  g o . s o y b a s e . o r g / a m i g o / a 
m i g o / l a n d i n g     ) database, and the GeneCards human gene 
database [34]. After filtered with the standards of protein 
coding and relevance score > 1, 480, 367, and 4028 PRGs 
were respectively obtained. Additionally, 547 PRGs were 
obtained from the published literature [35]. After remov-
ing duplicate genes, a total of 4367 PRGs were included, 
and used for subsequent analysis in this study (Supple-
mentary Table 1).

https://amigo.soybase.org/amigo/amigo/landing
https://amigo.soybase.org/amigo/amigo/landing


Page 3 of 16Wei et al. Hereditas          (2024) 161:52 

Identification and enrichment analysis of characteristic 
genes
The R package “DESeq2” [36] was used to identify dif-
ferentially expressed genes (DEGs) on 694 glioma and 
1,141 normal samples according to adjusted p-values 
(p-adj) < 0.05 and |log2 fold change (FC)| > 1. Differen-
tially expressed platelet-related genes (DEPRGs) were 
identified using overlapping DEGs and PRGs for further 
analysis. Characteristic genes related to survival status 
(p < 0.05) were identified using univariate Cox regression 
analysis of DEPRGs. We performed Gene set enrichment 
analysis (GSEA), Gene Ontology (GO) analysis, and the 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
analysis to explored the function and pathways of char-
acteristic genes using the R package “clusterProfiler” 
with p-adj < 0.05 considered statistically enriched. “H.all.
v2023.2.Hs.entrez.gmt” was set as a reference set for the 
GSEA analysis.

Development and validation of the platelet-associated 
prognostic model
Based on the characteristic genes, the LASSO regres-
sion analysis was performed using the R package “glm-
net” with a random seed of three to further shrink the 
platelet-related prognostic signature genes and construct 
the most suitable prognostic risk model. Subsequently, 
the prognostic model genes were confirmed, and the risk 
scores were imputed as follows:

 risk score =
∑

n
i=1β i × Expi

where β indicates the LASSO regression coefficient, i 
indicates nine platelet-related prognostic genes, and the 
Exp indicates the expression. In TCGA cohort, glioma 
samples were categorized into high- or low-risk groups 
according to the median risk score. The survival curves 
were established using the R packages “survminer” 
and “survival” to determine the differences in survival 
between the two groups. To determine the reliability of 
the prognostic model, the R package “timeROC” was 
utilized to plot the receiver operating characteristic 
(ROC) curves of the patients [37]. In addition, the CGGA 
mRNAseq 325 and CGGA mRNAseq 693 datasets were 
used to verify the properties of the prognostic model for 
accurately predicting glioma.

Nomogram construction
The risk scores and clinical parameters (age and gender) 
of patients with glioma were evaluated using univari-
ate Cox regression analysis. Multivariate Cox regression 
analysis was performed to confirm whether the risk score 
was an independent predictive factor for glioma out-
comes. Based on the independent predictor, a nomogram 

was established to forecast the survival probability of 
glioma patients at 1-, 2-, and 3-year using the R package 
“rms” in TCGA. A calibration diagram was used to evalu-
ate the accuracy of the nomogram.

Tumor microenvironment analysis
The infiltration proportions of 22 immune cells in glioma 
samples was appraised using the “CIBERSORT” [38]. 
Correlations among the prognostic signature genes, 22 
immune cells, and risk scores were explored, and the 
infiltration proportions of 28 immune cells in the TME 
was determined using the “ssGSEA” analysis. ESTIMATE 
[39] was used to calculate the immune, stromal, and esti-
mate scores of the TME. In particular, the association 
between the risk score and immune checkpoint genes 
[40] was calculated to investigate the connection between 
the prognostic model and immunotherapy.

Immunohistochemistry data analysis
The protein expression data for these prognostic model 
genes were downloaded from the Human Protein Atlas 
database [41]. Immunohistochemistry (IHC) was used to 
estimate the protein levels of prognostic signature genes 
in the glioma and normal tissues.

scRNA-seq data analysis
The R package “Seurat” was used to perform scRNA-
seq analysis [42]. The following quality measures were 
adhered to: removal of three or fewer cells, removal of 
low-quality cells with fewer than 200 genes, and exclu-
sion of 5% mitochondrial genes. The remaining cells were 
normalized using the R package “NormalizeData” func-
tion. Principal component analysis was performed on 
single-cell samples, and the top 20 samples was visualized 
using a uniform manifold approximation and projection 
algorithm. The R packages “singleR” and “celldex” were 
used to identify and annotate different cell clusters.

Genetic mutation and candidate drugs susceptibility data 
analysis
Mutation differences between high- and low-risk groups 
in TCGA cohort was analyzed using the R package 
“maftools” and visualized with waterfall maps. Based 
on two pharmacogenomic databases (Cancer Thera-
peutics Response Portal [CTRP] and Genomics of Drug 
Sensitivity in Cancer [GDSC]), the drug sensitivity was 
determined by counting the half-maximal inhibitory 
concentration (IC50) of the drug candidates using the R 
package “oncopredict” (p < 0.05). Finally, the drugs that 
were significantly different between the two risk groups 
and had lower IC50 in the high-risk group were selected. 
Additionally, the ADMETlab 3.0 online platform was 
used to predict the clinical effects and possible side 
effects of drug candidates.
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Statistical analysis
The R software (version 4.4.0) was used for statistical 
analysis. Survival curves were generated using Kaplan–
Meier (KM) curves. Correlation analysis was performed 
using the cor function, and the Spearman’s rank cor-
relation coefficient was used as the statistical method. 
Between-group individual differences were evaluated 
using the Wilcoxon signed-rank test. Statistical signifi-
cance was set at p < 0.05.

Results
Research schematic diagram
Supplementary Fig. 1 illustrates the research process.

Identification of DEPRGs
In total, 5810 DEGs and 4367 PRGs were identi-
fied, and 1358 DEPRGs were identified by overlapping 
DEGs and PRGs (Fig.  1A). Univariate Cox regression 
analysis identified 1030 characteristic genes associated 
with overall survival in patients with glioma (Fig.  1B), 
and top30 characteristic genes associated with over-
all survival in patients with glioma were displayed 
(Fig.  1C). Enrichment analysis was performed to bet-
ter analyze the biological functions of the identified 
1030 characteristic genes. GO analysis revealed that 
the characteristic genes were significantly enriched 
in “wound healing” (p = 9.84 × 10− 43), “regulation of 
body fluid levels” (p = 1.61 × 10− 38) and “coagulation” 
(p = 8.82 × 10− 38) of biological process; and “collagen-
containing extracellular matrix” (p = 2.84 × 10− 26), “exter-
nal side of plasma” (p = 6.61 × 10− 26), and “endocytic 
vesicle” (p = 5.98 × 10− 26) of cellular component; as well 
as “cytokine receptor binding” (p = 8.06 × 10− 15), “inte-
grin binding” (p = 1.83 × 10− 16), and “cytokine activ-
ity” (p = 1.07 × 10− 13) of molecular function (Fig.  1D). 
KEGG analysis demonstrated that characteristic genes 
were closely associated with “PI3K − Akt signaling 
pathway” (p = 1.05 × 10− 13), “proteoglycans in cancer” 
(p = 5.10 × 10− 13), “platelet activation” (p = 2.12 × 10− 15), 
“chemokine signaling pathway” (p = 8.49 × 10− 13), “human 
T-cell leukemia virus 1 infection” (p = 3.05 × 10− 14), and 
“complement and coagulation cascades” (p = 1.55 × 10− 15) 
(Fig.  1E). Additionally, the GSEA analysis indicated 
that the characteristic genes were strongly correlated 
with “G2M checkpoint” (p = 3.33 × 10− 10), “E2F targets” 
(p = 1.00 × 10− 10), “epithelial mesenchymal transition” 
(p = 9.98 × 10− 7), “kras signaling up/DN” (p = 1.25 × 10− 4/ 
1.30 × 10− 4), “glycolysis” (p = 1.74 × 10− 3), “interferon 
gamma response” (p = 1.13 × 10− 3), “inflammatory 
response” (p = 2.95 × 10− 3), “IL6 JAK STAT3 signaling” 
(p = 5.08 × 10− 3), “T signaling via NF-κB” (p = 7.10 × 10− 3), 
“IL2 STAT5 signaling” (p = 01.49 × 10− 2), and “interferon 
alpha response” (p = 1.30 × 10− 2) (Fig. 1F).

Platelet-related prognostic risk model was constructed and 
validated in glioma
Based on the aforementioned 1030 characteristic genes, 
LASSO regression analysis was performed to screen 
the optimal gene combination for the construction of 
the most valuable risk model. The results revealed nine 
optimal platelet-related prognostic signature genes in 
the TCGA cohort (p < 0.05), including capping actin pro-
tein, gelsolin-like (CAPG), chloride intracellular channel 
1 (CLIC1), galactosidase beta 1 (GLB1), G protein sub-
unit gamma 12 (GNG12), kinesin family member 20  A 
(KIF20A), protein disulfide isomerase family A member 
4 (PDIA4), sulfatase 2 (SULF2), t2 (TAGLN2), and wee1-
like protein kinase (WEE1) (Fig.  2A). Subsequently, the 
risk score of samples in the TCGA cohort was derived 
according to the following formula: risk score = (1.2 × 10− 4 
× CAPG) + (2.12 × 10− 3 × CLIC1) + (1.42 × 10− 2 × GLB1) 
+ (2.36 × 10− 3 × GNG12) + (5.36 × 10− 3 × KIF20A) 
+ (1.66 × 10− 3 × PDIA4) + (-1.16 × 10− 3 × SULF2) + 
(8.1 × 10− 4 × TAGLN2) +(3.40 × 10− 3 × WEE1). In addi-
tion, IHC analysis showed that the protein expression of 
the nine optimal signature genes between the normal and 
glioma tissues. It was found that CAPG, CLIC1, GLB1, 
GNG12, KIF20A, PDIA4, SULF2, TAGLN2, and WEE1 
were not detected in the normal tissues; while were 
expressed in the glioma tissues (low or medium expres-
sion) except for GNG12 and TAGLN2 (Supplementary 
Fig. 2).

In the TCGA cohort, the glioma samples were divided 
into high- and low-risk groups according to the median 
value of the risk score; as well as the samples with the 
risk score value below the median were used as the low-
risk group (the glioma with better prognosis), while the 
samples with the risk score value higher the median were 
used as the high-risk group (the glioma with worse prog-
nosis) (Fig. 2B). Furthermore, patients with high risk had 
a higher probability of death earlier than those with low 
risk (Fig.  2B). Regarding prognosis of glioma, the KM 
survival curve demonstrated that the high-risk group had 
a significantly lower survival rate than the low-risk group 
(p < 0.001, HR = 0.12, 95% CI = 0.09–0.16; Fig.  2C). ROC 
curves were generated to estimate the efficiency of the 
prognostic model. The areas under the curve (AUCs) for 
1-, 2-, and 3-year survival were 0.886, 0.909, and 0.918, 
respectively, indicating that the prognostic model had a 
good accuracy (Fig. 2D).

In addition, the constructed prognostic model was fur-
ther verified using the datasets of CGGA mRNAseq_325 
and CGGA mRNAseq_693. Based on their correspond-
ing median values of risk scores, the patient samples 
with glioma in the CGGA mRNAseq_325 (Fig.  2E) and 
CGGA mRNAseq_693 (Fig.  2F) were categorized into 
high- and low-risk groups. As shown in Fig. 2E, and 2F, 
the patients with low risk score had a lower probability 
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Fig. 1 Identification and functional enrichment analysis of characteristic genes. (A) Venn plots showing 1,358 common genes in DEGs and PRGs. (B) 
Forest plots showing the results of the univariate Cox analysis for the top 30 genes. (C) Volcano plot of 1,030 characteristic genes in glioma samples 
compared to those in normal samples. Enrichment analysis of GO (D), KEGG (E), and GSEA (F) based on 1,030 characteristic genes. DEGs, differentially ex-
pressed genes; PRGs, platelet-related genes; GSEA, Gene set enrichment analysis; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes
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Fig. 2 (See legend on next page.)
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of death than those with high risk. Consistently, the KM 
survival curve in the two validation datasets revealed 
that patients in the high-risk group had a poor progno-
sis (p < 0.001, HR = 0.19, 95% CI = 0.14–0.25 for CGGA 
mRNAseq_325; p < 0.001, HR = 0.26, 95% CI = 0.21–0.32 
for CGGA mRNAseq_693; Fig.  2G and H). The AUCs 
for 1-, 2-, 3-year survival were 0.774, 0.858, and 0.87, 
respectively, in the CGGA mRNAseq_325 dataset 
(Fig. 2I). Meanwhile, the AUCs for 1-, 2-, 3-year survival 
were 0.729, 0.797, and 0.777, respectively, in the CGGA 
mRNAseq_693 dataset (Fig. 2J).

To evaluate the predictive effectiveness of the model, 
polygenic risk score (PRS) was subjected to an ROC anal-
ysis. The AUCs for PRS were 0.839, 0.805, and 0.761 in 
TCGA cohort and the CGGA mRNAseq_325 and CGGA 
mRNAseq_693 datasets, respectively, indicating a great 
predictive ability (Supplementary Fig.  3A, 3B, 3  C). To 
appraise the forecasting ability of the risk scores and 
other clinical characteristics, ROC curves for both the 
training and validation sets were constructed. The AUCs 
for risk score, gender, and age were 0.878, 0.524, and 
0.810, respectively, in TCGA cohort, indicating better 
prognostic accuracy of the risk scores than that of other 
clinical features (Supplementary Fig. 3D). Similar results 
were obtained for the two validation sets (Supplementary 
Fig. 2E, 2 F). Thus, the prognostic model showed favor-
able efficiency in predicting the prognosis of gliomas.

Screening of independent prognostic factor and 
nomogram construction
Univariate and multivariate Cox regression analyses were 
performed to investigate whether the risk score could 
be used as an independent predictive model for patients 
with glioma. Univariate Cox regression showed a statisti-
cal correlation between the risk score, age, and survival 
outcomes in patients with glioma (p < 0.001, Fig.  3A). 
Further, it was found that risk score and age were inde-
pendent prognostic predictors of glioma after multivari-
ate Cox analysis (p < 0.001, Fig. 3B). Subsequently, in the 
TCGA cohort, a nomogram was constructed to evalu-
ate the relationship between each variable (age and risk 
score) in the prognostic model (Fig. 3C). For example, a 
patient aged 53 years old and with the risk score of 0.93 
had about a total point of 130, with a predicted (Pr) over-
all survival (OS.) time < 3 of 0.683, a Pr OS. time < 2 of 
0.485, and a Pr OS. time < 1 of 0.192 (Fig. 3C). Then, the 

performance of the nomogram was assessed using a cali-
bration diagram. The diagram revealed a linear relation-
ship between the nomogram-predicted prognostic model 
and 1-, 2-, and 3-year survival rates, indicating that the 
model had a high predictive effect (Fig. 3D). In summary, 
the risk score could be considered a credible prognostic 
marker for patients with gliomas.

TME and the treatment of glioma were widely related
The association between immune and the aforemen-
tioned nine optimal risk signatures was also explored in 
the TCGA cohort. The results of CIBERSORT revealed 
that most immune cells, such as Tregs, resting NK cells, 
and M2 macrophages, showed a higher proportion of 
infiltration in the high-risk group, whereas other immune 
cells, including naive B cells, activated NK cells, and mast 
cells, displayed a higher proportion of infiltration in the 
low-risk group (Fig. 4A). We also observed an association 
between prognostic signature genes and immune cells. 
Naive T cells CD4, activated NK cells, plasma cells, and 
mast cells, were negatively correlated with the expres-
sion of CAPG, CLIC1, GLB1, GNG12, PDIA4, SULF2, 
TAGLN2, and WEE1, while was positively correlated 
with KIF20A expression. Conversely, M2 and M0 macro-
phages were positively correlated with the expression of 
CAPG, CLIC1, GLB1, GNG12, PDIA4, SULF2, TAGLN2, 
and WEE1; whereas was negatively correlated with 
KIF20A expression (Fig.  4B). Aligning with the above 
mentioned results, plasma cells, naive T cells CD4, and 
activated NK cells had a negative correlation with the risk 
score, whereas M2 and M0 macrophages had a positive 
correlation with the risk score (Fig. 4C).

Furthermore, the infiltration proportions of 28 immune 
cells in the distinct risk groups were determined using 
ssGSEA. These results revealed significant differences in 
the proportions of the 26 immune cell types except for 
immature B cell (p > 0.05) and macrophage (p > 0.05), 
consistent with the CIBERSORT results (Fig. 4D). After-
wards, the correlation analysis of immune checkpoints 
and prognostic signature genes showed that the immune 
checkpoint of BTNL9 was negatively correlated with the 
prognostic signature genes (risk score), whereas the other 
immune checkpoints were positively associated with the 
prognostic signature genes (Fig. 4E).

The TME was highly correlated with glioma progno-
sis and treatment outcomes, so we further analyzed the 

(See figure on previous page.)
Fig. 2 Prognostic model establishment and validation. (A) LASSO regression analysis. (B) Description of risk score and survival status by dividing glioma 
samples into high- and low-risk groups in TCGA training set. (C) KM curve describing the survival rate of glioma patients in the high- and low-risk groups 
in TCGA training set. (D) ROC curve of the predictive ability of the risk score for 1-, 2-, and 3-year survival rates in TCGA cohort. Description of risk score 
and survival status by dividing the samples into high- and low-risk groups in the CGGA mRNAseq_325 (E) and CGGA mRNAseq_693 (F) validation set. 
KM curve describing the survival rate of glioma patients in the high- and low-risk groups in the CGGA mRNAseq_325 (G) and CGGA mRNAseq_693 (H) 
validation sets. ROC of the predictive ability of the risk score for 1-, 2-, and 3-year survival rates in the CGGA mRNAseq_325 (I) and CGGA mRNAseq_693 
(J) validation sets. TCGA, The Cancer Genome Atlas; CGGA, Chinese Glioma Genome Atlas; ROC, receiver operating characteristic; AUC, area under the 
curve; KM, Kaplan–Meier;
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stromal, immune, and ESTIMATE scores in the high- 
and low-risk groups. It was found that compared with the 
low-risk group, the stromal, immune, and ESTIMATE 
scores in the high-risk group were significantly higher 
(p < 0.001, Fig.  4F). As shown in Fig.  4G, the risk score 
was positively correlated with stromal (R = 0.747, p < 2.2e-
16), immune (R = 0.652, p < 2.2e-16), and ESTIMATE 
(R = 0.705, p < 2.2e-16) scores; whereas was negatively 
correlated with tumor purity (R= -0.705, p < 2.2e-16).

scRNA data analysis to verify the function of prognostic 
signature genes
From the cellular level, the scRNA data were employed 
to confirm the function of the nine prognostic signature 
genes in glioma. Eventually, 13 cell clusters (cluster 0, 1, 
2, 3, 4, 5, 6, 7, 8, 9, 10, 11 and 12) were obtained, which 
annotated into 20 cell types, such as astrocyte, B cell, 
chondrocytes, dendritic cells, endothelial cells, eryth-
roblast, gametocytes, hepatocytes, macrophage, mono-
cyte, neuroepithelial cell, neurons, neutrophils, platelets, 
T cells, and natural killer (NK) cells (Fig. 5A). Then, the 
expression distributions of CAPG, CLIC1, GLB1, GNG12, 
KIF20A, PDIA4, SULF2, TAGLN2, and WEE1 across dif-
ferent cell types were analyzed. It was shown that CAPG, 
CLIC1, and TAGLN2 were highly expressed in NK cells 
and T cells (Fig. 5B). GLB1 was mainly expressed in epi-
thelial cells, tissue stem cells, and macrophages; and 
SULF2 were highly expressed in the astrocytes and tissue 

stem cells (Fig. 5B). The resting signature genes (GNG12, 
KIF20A, PDIA4, and WEE1) were primarily expressed in 
astrocytes (Fig. 5B).

Genetic mutation, drug sensitivity speculation, and 
identification of potential therapeutic drugs
Further, gene mutation in glioma was analyzed using 
waterfall maps, and the top 20 mutated genes were identi-
fied and visualized as high- and low-risk groups (Fig. 6A). 
Among them, the main type of mutation was missense 
mutations. IDH1 (44%) in glioma was the most frequently 
mutated gene, followed by TP53 (33%) and ATRX (22%). 
Notably, IDH1 mutations occurred in almost all samples 
in the low-risk group (Fig. 6A).

Based on the CTRP- and GDSC-derived drug response 
data, drug sensitivity was evaluated in the high- and 
low- risk groups. Prospective drugs with high sensitiv-
ity in high-risk populations were also explored. In total, 
42 drug candidates or compounds were identified from 
the CTRP and GDSC databases. Among them, four 
drugs or compounds (AZD7762, dinaciclib, paclitaxel, 
and topotecan) were observably diverse in the two risk 
groups. Based on the CTRP database, the IC50 values 
of AZD7762 (FC = 0.954), dinaciclib (FC = 0.936), pacli-
taxel (FC = 0.962), and topotecan (FC = 0.977) were sig-
nificantly lower in the high-risk group than those in 
the low-risk group (p < 0.05, Fig.  6B). According to the 
GDSC database, the trend of IC50 values of AZD7762 

Fig. 3 Nomogram assessing prediction efficiency of the prognostic model in TCGA cohort in glioma patients. (A) Univariate Cox analysis of risk scores 
and clinical characteristics. (B) Multivariate Cox analysis of risk scores and clinical characteristics. (C) A nomogram built based on age and risk scores. (D) 
Columnar line plot calibration curve for 1-, 2- and 3-year survival probabilities. The dashed 45° line on the calibration chart indicates the ideal prediction, 
whereas the X and Y axes on the chart indicate the progress and observations of the nomogram prediction, respectively. TCGA, The Cancer Genome Atlas
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(FC = 0.954), dinaciclib (FC = 0.936), and topotecan in the 
two risk groups was similar with that based on the CTRP 
database (Fig. 6C). However, in the GDSC database, the 
IC50 value of paclitaxel (FC = 1.471) in the high-risk group 
was evidently higher than that in the low-risk group 
(p < 0.05, Fig. 6C).

In addition, to further investigate the superiority of 
drug candidates for all glioma patients, ADMET analysis 
was performed. We found that AZD7762 was the primary 
drug with superior absorption, distribution, metabolism, 
excretion, and toxicity than other compounds, followed 
by dinaciclib, topotecan and paclitaxel (Fig. 6D).

Discussion
Gliomas are malignant brain tumors that seriously 
threaten human safety [43], representing 81% of all cen-
tral nervous system (CNS) cancers [6]. Platelets are 
closely correlated with the occurrence, metastasis, and 
recurrence of gliomas, which may significantly affect 
patient prognosis [19]. Although glioma treatments 

have progressed in recent years [6, 44, 45], the progno-
sis remains unsatisfactory. Therefore, screening for novel 
platelet-related prognostic biomarkers is crucial. In this 
study, we identified 1,030 characteristic genes; nine 
platelet-related prognostic genes (CAPG, CLIC1, GLB1, 
GNG12, KIF20A, PDIA4, SULF2, TAGLN2, and WEE1) 
were identified based on TCGA cohort, and their expres-
sion and function were verified. The glioma samples were 
categorized into high- and low-risk groups according 
to the risk score, and the constructed prognostic model 
showed good performance in both the training and 
validation datasets. Moreover, a nomogram model con-
structed using the risk scores and age revealed that the 
risk score could be a reliable prognostic signature for 
patients with glioma. We also found that the prognostic 
signature genes and models were highly correlated with 
immune cells in gliomas. Finally, the analysis of sensitiv-
ity to chemotherapy drugs demonstrated AZD7762 as a 
potential effective drug for glioma treatment.

Fig. 4 Tumor immune microenvironment between high- and low-risk groups in TCGA cohort. (A) CIBERSORT scores for 22 immune cells. (B) Correlation 
matrix between immunocytes and prognostic signature genes. (C) Correlation lollipop plot between immune cells and risk score. (D) ssGSEA scores for 
28 immune cells. (E) Correlation network diagram between the risk scores and immune checkpoints. (F) Violin Plot depicting the TME scores of high- and 
low-risk group patients (G) Correlation analysis between the risk scores and ESTIMATE score, immune score, stromal score, and tumor purity. TCGA, The 
Cancer Genome Atlas; TME, tumor microenvironment; GSEA, Gene set enrichment analysis
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Fig. 5 scRNA analysis of glioma. (A) Annotation of cell types. (B) The expression distributions of CAPG, CLIC1, GLB1, GNG12, KIF20A, PDIA4, SULF2, TAGLN2, 
and WEE1 across different cell types. scRNA-seq, single-cell RNA sequencing; CAPG, capping actin protein, gelsolin-like; CLIC1, chloride intracellular chan-
nel 1; GLB1, galactosidase beta 1; GNG12, G protein subunit gamma 12; KIF20A, kinesin family member 20 A; PDIA4, protein disulfide isomerase family A 
member 4; SULF2, sulfatase 2; TAGLN2, transgelin 2
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Fig. 6 Tumor mutation and drug sensitivity analyses of patients at different risk statuses, and identification of potential therapeutic drugs for patients. (A) 
Waterfall plots of the genetic mutation features. (B) Sensitivity prediction of chemotherapeutic regents in the CTRP dataset. (C) Sensitivity prediction of 
chemotherapeutic regents in the GDSC dataset. (D) ADMET attributes of potential therapeutic drugs. CTRP, Cancer Therapeutics Response Portal; GDSC, 
Genomics of Drug Sensitivity in Cance

 



Page 12 of 16Wei et al. Hereditas          (2024) 161:52 

Glioma development is complex, and the factors 
involved are not entirely clear, resulting in challeng-
ing clinical treatment and poor prognoses [46]. Find-
ing reliable biomarkers to predict the disease is a major 
challenge in personalizing treatment and improving out-
comes for patients with glioma [47, 48]. Previous studies 
reported that the platelet-to-lymphocyte ratio and plate-
let count are closely related to the development of glioma 
[23, 24], suggesting that PRGs might have prognostic 
value in glioma. In this study, 1,030 DEPRGs were identi-
fied, indicating that PRGs vary widely in gliomas, which 
is consistent with reports that PRGs differ in different 
types of cancers [49, 50]. Enrichment analysis revealed 
that DEPRGs were largely enriched in pathways such 
as platelet activation, epithelial-mesenchymal transi-
tion, and glycolysis. This study suggested that PRGs may 
influence the development and prognosis of glioma by 
regulating glucose metabolism in vivo and the epithelial-
mesenchymal transition pathway.

Platelets are known to influence glioma occurrence, and 
in this study, we identified nine platelet-related prognostic 
signature genes—CAPG, CLIC1, GLB1, GNG12, KIF20A, 
PDIA4, SULF2, TAGLN2, and WEE1. The IHC analysis 
showed that in addition to the expression of GNG12 and 
TAGLN2, the expression of CAPG, CLIC1, GLB1, KIF20A, 
PDIA4, SULF2, and WEE1 were all expressed in the gli-
oma tissues than in the normal tissues (low or high). Rela-
tionships between these genes and cancer have also been 
reported. The expression level of CAPG is higher in glioma 
tissues than in normal tissues [51], which is in line with our 
results. The expression of CLIC1 mRNA and protein is sig-
nificantly elevated in high-grade gliomas and is enhanced 
with the increase in tumor WHO grade [52]. SULF2 is the 
best tumor-dependent protein for glioma because the extra-
cellular sulfatase SULF2 activates the RTK pathway [53]. 
PDIA4, a member of the protein disulfide isomerase fam-
ily, promotes apoptosis by influencing aerobic glycolysis of 
metabolites, thus inhibiting GBM proliferation [54]. KIF20A 
deficiency can suppress the proliferation and migration of 
glioma cell [55]. GNG12 belongs to the G protein family, 
and GNG12-AS1 stimulates or suppresses the proliferation 
and relocation of glioma cells by influencing the KT/GSK-
3β/β-catenin pathway activity [56]. TAGLN2 overexpres-
sion, an actin-binding protein, significantly promotes the 
proliferation and relocation of glioma cells [57]. WEE1 is a 
protein kinase whose expression increases with the increase 
of malignant degree of glioma [58]. However, increased 
GLB1 levels lead to increased survival without prostate-
specific antigen (PSA) in prostate cancer [59], which is con-
tradictory with our outcomes, as well as the specific roles of 
GLB1 in glioma need to be further explored. These reports, 
together with our findings, it can be inferred that all prog-
nostic signature genes (except for GNG12 and TAGLN2) 
were poor prognostic factors for glioma, and were highly 

expressed in glioma tissues [56, 58–65]; but the detailed 
actions of these genes in gliomas warranted to be unearthed 
using in vitro and in vivo experiments. Consequently, the 
platelet-related signature genes (CAPG, CLIC1, GLB1, 
GNG12, KIF20A, PDIA4, SULF2, TAGLN2, and WEE1) 
are closely associated with the prognosis of patients with 
glioma; as well as the proposed prognostic risk model based 
on these platelet-related signature genes may be an effective 
tool for predicting the prognosis of gliomas.

Gliomas recruit immune regulatory cells, which, 
together with macrophage-related tumor-associated 
cells, promote immunosuppressive functions in the 
tumor immune microenvironment [66]. Thus, the 
immune system determines the development and effec-
tiveness of tumor treatment. Platelets are strongly asso-
ciated with gliomas and the immune microenvironment 
and may promote tumor development by affecting the 
TME [67]. The interaction between tumors and platelets 
activates platelets, which generate normal MHC class I 
to coat tumor cells and help them evade immune surveil-
lance [68]. In addition, activated platelets release trans-
forming growth factor beta (TGF-β1) into the TME to 
promote the spread of tumor cells to other organs [67]. 
Activated platelets can release the CD40 ligand, inhibit-
ing the migration ability of CD4CD25Foxp3 regulatory T 
cells and eventually affecting the antitumor immunity of 
gliomas [20]. In this study, most immune cells, including 
B cells, T cells CD8 and Tregs, differed in the high- and 
low-risk groups and had different degrees of correlation 
with prognostic signature genes in gliomas. Tregs could 
inhibit tumor growth [69], and ADAM10 released by 
glioma cells can induce regulatory B cells, inhibit the 
activity of CD8 + T cells, and induce Tregs [70]. Neoadju-
vant immune checkpoints can guide targeted therapy for 
GBM; for instance, Siglec-9, an immune checkpoint mol-
ecule on macrophages, can directly activate CD4 T and 
CD8 T cells to affect the treatment of GBM [71]. In this 
study, the immune checkpoints and prognostic signature 
genes were significantly correlated. Therefore, targeted 
regulation of prognostic signature genes is conducive 
to inhibit or promote platelets to affect angiogenesis 
and other processes of tumor cells, thereby affecting the 
immune function of the TME. This finding is consistent 
with the conclusions of a recent research [18].

PRGs are mainly expressed in platelets, and play a key role 
in hemostasis, clotting, and the immune system. From the 
cellular level, we found that the identified signature genes 
were primarily expressed in astrocytes, NK cells, and mac-
rophage. After central nervous system injury, astrocytes are 
reactively activated, which are the key cells involved in the 
repair mechanism after injury. Reactive astrocytes are an 
integral part of the glioma microenvironment [72]. Lin et al. 
[73] reported that astrocytes could protect glioma cells from 
chemotherapy, and up-regulate survival genes through gap 
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junction communication. NK cells, as effector lymphocytes 
of the innate immune system, have a wide range of tumor 
recognition and killing mechanisms, and are an important 
part of the first line of defense against malignant cells. A 
previous investigation identified that NK cells-associated 
genetic signatures could predict glioma malignancy and 
patient survival [74]. Macrophages are heterogeneous, as 
well as their phenotype and function are regulated by the 
surrounding microenvironment. Macrophages are typically 
found in two distinct subpopulations: M1 macrophages, 
which has proinflammatory effects and are polarized by 
Th1; and M2 macrophages, which have anti-inflammatory 
and immunomodulatory effects, and are polarized by Th2 
[75]. Pyonteck et al. [76] demonstrated that CSF-1R inhibi-
tion could alter the polarization of macrophages, and sup-
press the development of glioma. Taken together, we can 
speculate that the identified signature genes expressed in 
astrocytes, NK cells, and macrophage may be mainly related 
to immunity and inflammation; as well as astrocytes, NK 
cells, and macrophage may participate in the occurrence 
and progression of glioma.

Platelets protect tumor cells from the cytotoxicity of che-
motherapy drugs [77]. Activated platelets release molecules 
and growth factors such as EGF, PDGF, TGF-β, IGF and 
CCL5 to promote the expansion of ovarian cancer cells, 
protecting tumor cells from chemotherapy [78]. Platelets 
also impair the adaptive immune response against tumors 
in the TME. Therefore, inhibiting platelet activity can 
improve the efficacy of immunotherapy [77]. In this study, 
active components of platelet-related prognostic target 
proteins were screened and identified. Moreover, we found 
that AZD7762 could bind to platelet-related prognostic 
signature target proteins, highlighting its potential for gli-
oma treatment. Temozolomide (TMZ), a commonly used 
drug for glioma treatment, and a combination of TMZ and 
AZD7762 can induce synergistic cytotoxic effects in human 
glioma cells [79]. In addition, AZD7762 lowered the metab-
olism of pembrolizumab and reduced tumor size in these 
models by synergizing with gemcitabine [80]. Consequently, 
the synergy of AZD7762 with other drugs can reduce tumor 
growth, which has value in guiding clinical medication and 
prognosis of glioma.

This study had some limitations. While the establish-
ment of the prognostic signature genes in study was vali-
dated using datasets, but a large amount of clinical data 
from patients with glioma is still needed to support our 
findings. Additionally, the mechanism underlying the 
immune response of prognostic signature genes in glio-
mas requires further investigation. Finally, the effects 
of the selected drug candidates on glioma prognosis 
requires further verification.

Conclusion
Nine platelet-related prognostic genes (CAPG, CLIC1, 
GLB1, GNG12, KIF20A, PDIA4, SULF2, TAGLN2, and 
WEE1) were identified. We constructed a prognostic 
model and validated it using external datasets, dem-
onstrating its accuracy in predicting its gliomas. TME 
analysis showed that almost all immune cells, including 
B cells, CD8 T cells, NK cells, and Tregs, differed in the 
high- and low-risk groups and had different degrees of 
correlation with prognostic signature genes in gliomas. 
In addition, AZD7762 may be an appropriate candidate 
for the treatment of gliomas. Our study identified that 
platelets could influence glioma prognosis and provided 
a new strategy for the clinical treatment and progno-
sis of gliomas. Additionally, we provided a new research 
direction and theoretical basis for the clinical targeting of 
platelets and immunotherapy.
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