Peng et al. Hereditas ~ (2025) 162:18 Hereditas
https://doi.org/10.1186/541065-025-00374-y

Check for
updates

The causal effects between low back pain
and cerebrospinal fluid metabolites: a two-
sample Mendelian randomization study
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Abstract

Background Observational studies have shown an association between cerebrospinal fluid (CSF) metabolites and
low back pain (LBP), but the causal relationship between these factors remains unclear.

Methods \We performed a two-sample Mendelian randomization (MR) analysis to examine whether there is a causal
relationship between CSF metabolites and LBP. We applied several MR methods, including inverse variance weighting,
weighted median, MR-Egger, Wald ratio, and MR-PRESSO, to test the causal relationship and conducted a sensitivity
analysis to assess the robustness of the results.

Results We identified a total of 12 CSF metabolites significantly associated with LBP, of which Bilirubin,
5,6-dihydrothymine, Erythronate, Mannitol/sorbitol, and Butyrate have a potential inhibitory causal effect on LBP

risk (p < 0.05). Meanwhile, 2-hydroxyadipate, Gamma-glutamyl-alpha-lysine, Indoleacetate, N-acetylputrescine,
Palmitoyl dihydrosphingomyelin, S-methylcysteine, and 2,3-dihydroxy-5-methylthio-4-pentenoate play a causal role in
increasing the risk of LBP (p < 0.05). No significant estimates of heterogeneity or pleiotropy were detected.

Conclusion Our study emphasizes the causal relationship between CSF metabolites and LBP risk, providing reference
for clinical treatment and prognosis of LBP.

Keywords Cerebrospinal fluid metabolites, Biomarkers, Low back pain, Mendelian randomization, Causal relationship

Introduction

Low back pain (LBP) is the leading cause of disability
globally and one of the most common musculoskeletal
disorders, affecting people of all ages across countries
with different income levels [1, 2]. According to its eti-
ology, low back pain can be divided into specific and
non-specific categories, with non-specific low back pain
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40 and older, as well as in women; the lifetime prevalence
is about 40% [5]. Additionally, LBP leads to 69 million
years lived with disability (YLDs), accounting for 8.1%
of all YLDs, making it the leading cause of YLDs and the
primary cause of global disability. It is projected that the
number of cases will reach 843 million by 2050 [4]. More-
over, studies from countries such as the UK, Australia,
and the US have shown that the societal costs of LBP,
particularly productivity loss, lead to a substantial eco-
nomic burden [6, 7]. As a result, LBP not only severely
impacts patients’ quality of life, consumes substantial
healthcare resources, but also leads to increased health-
care costs and productivity losses, creating a heavy bur-
den on individuals, families, and society [8].

Metabolites, acting as functional intermediates, can
reveal the relationship between genetic variations and
metabolites, thereby assisting in understanding the bio-
logical mechanisms of human diseases.Alterations in
metabolites could represent a risk factor for disease.The
pathophysiological mechanisms of LBP remain unclear,
especially for non-specific low back pain.In recent years,
biomarkers, which can objectively measure and evalu-
ate general biological processes, disease progression, or
drug responses related to medical interventions, have
gained significant attention.Despite prior research sum-
marizing some biomarkers related to LBP, several plasma
inflammatory markers are considered key substances that
contribute to the development of LBP [9, 10]. Zwart et
al. [11] used proton nuclear magnetic resonance spec-
troscopy to analyze various metabolites in human cere-
brospinal fluid, finding that LBP or sciatica patients
exhibited higher metabolic activity levels compared to
pain-free control subjects, with significantly lower levels
of several key metabolites, especially in patients with disc
herniation or spinal cord imaging abnormalities. A study
found that 13 blood metabolites were causally related to
the risk of LBP caused by intervertebral disc degenera-
tion (IVDD), with 11 showing a negative correlation and
2 showing a positive correlation [12]. This suggests that
plasma metabolites or cerebrospinal fluid metabolites
may be associated with the occurrence of LBP.However,
the current evidence is not sufficient to directly associ-
ate these metabolic changes with pain severity or the
activity status of LBP over time.Moreover, these studies
are mostly observational, which inherently limits their
conclusions. On the one hand, the sample sizes are often
small; on the other hand, biomarkers related to LBP
tend to have low sensitivity and specificity, and are easily
affected by disease covariates like age, BMI, and depres-
sion.Crucially, observational studies cannot address the
reverse causality effect.For example, do different types
of LBP lead to changes in plasma metabolites, or are
changes in plasma metabolite concentrations a cause of
LBP? It remains unclear whether LBP causes changes in
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plasma metabolite concentrations, or if the change in
plasma metabolite concentrations triggers LBP.

Therefore, using Mendelian randomization(MR) to
determine the relationship between LBP and exposure
factors has significant advantages. Previous studies have
found that 13 blood lipid metabolites and immune cells
in blood have a causal relationship with the risk of LBP
caused by intervertebral disc degeneration (IVDD) [12,
13]. Furthermore, Modic changes (MC) in the lumbar
spine are strongly correlated with the development and
severity of LBP, and causal relationships suggest a sig-
nificant connection between serum lipid metabolites
and MC [14]. However, most studies aimed at identify-
ing biomarkers for LBP have concentrated on the causal
relationship between plasma metabolites and LBP [9, 12,
15, 16]. The causal link between cerebrospinal fluid (CSF)
metabolites and LBP remains uncertain, and there are
currently limited studies on this relationship.

MR is a causal inference method based on genetic vari-
ation that can assess the causal relationship between risk
factors and disease occurrence. Since genetic variation
is randomly distributed during meiosis [17], it mimics a
clinical randomized controlled trial without requiring the
vast human and material resources typically needed for
such experiments [18]. In addition, it employs multiple
sensitivity analyses to exclude the impact of confounding
factors on causality [19], effectively addressing reverse
causality [20], which is one of its advantages over obser-
vational studies [21].

Therefore, we used MR to analyze the GWAS data of
LBP and 338 cerebrospinal fluid metabolites to assess the
causal effect of cerebrospinal fluid metabolites on LBP
risk. We aim to integrate metabolomics and genomics by
identifying the metabolic pathways mediating LBP, with
the goal of providing new insights into early diagnosis
and treatment strategies for LBP.

Methodology

Study design

The detailed analysis process of this study is illustrated in
Fig. 1. MR should be conducted under three key assump-
tions: (1) genetic variations are closely associated with
the exposure; (2) genetic variations are independent of
any known or unknown confounding factors; (3) genetic
variations affect the outcome solely through exposure,
not via any other direct causal path. This implies that we
must control for the pleiotropy of genetic variations and
issues such as linkage disequilibrium. The design of this
study uses 338 cerebrospinal fluid metabolites as expo-
sures and low back pain (LBP) as the outcome to evaluate
the effect of changes in cerebrospinal fluid metabolites on
LBP.
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Fig. 1 The flowchart of the study

GWAS summary data on metabolites

The metabolite GWAS summary data were sourced from
the NHGRI-EBI GWAS Catalog. The GWAS sample
includes 291 adults from Europe, and around 7.05 million
SNPs from this population were analyzed for associa-
tion. After quality control, 338 metabolites were included
in the GWAS analysis. Detailed data information can be
found in Supplementary Table 1.

GWAS summary data for LBP

The GWAS data for LBP were obtained from the Finn-
Gen biobank (DF10 - December 18, 2023), and all
data can be accessed at https://www.finngen.fi/en.Th
e FinnGen study is a large-scale genomic initiative that
analyzed over 500,000 Finnish biosamples and their
associated genetic variations. Summary statistics can be
freely downloaded from the website. All of these data
are de-identified, available for free download, and can be
used without limitations.

Selection of instrumental variables

Initially, SNPs closely associated with the exposure
were selected based on their genome-wide significance
in the GWAS (P<1x10-5). The clumping distance
was >10,000 kb, and the linkage disequilibrium level
(r2<0.001) was applied. To assess whether the retained
SNPs might be subject to weak instrument bias, the
F-statistic was used and calculated. SNPs with an F-sta-
tistic less than 10 were considered weak instruments and
excluded [22]. The F statistic > 10 will enhance the robust-
ness of the results and reduce the risk of weak instrument
bias. After excluding weak instrumental variables from
the exposure and outcome datasets, the remaining SNPs
were used for MR analysis.

Assumption 1
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We used the most commonly used MR method—the
inverse variance weighted (IVW) method—to assess the
causal relationship between CSF metabolites and HS.
This method can precisely estimate causal effects when
all SNPs are valid instruments. We supplemented our
validation with MR-Egger regression, weighted median,
weighted mode, and simple mode to enhance accuracy
and stability. MR-Egger regression considers the inter-
cept term and allows MR analysis in the presence of hori-
zontal pleiotropy (where a single genetic variant affects
multiple traits).

The weighted median method takes the median of the
weighted instrument variable estimates. It is robust to
invalid instruments, providing consistent estimates even
if up to 50% of the instruments are invalid. The simple
mode method estimates the causal effect based on the
distribution pattern of the individual SNP estimate. It
assumes that the most common effect estimate is the true
causal effect, which is particularly useful when there is
heterogeneity among SNPs. This method improves the
accuracy of causal effect estimates by weighting more
precise SNPs. To ensure consistency and validity of the
analysis results, we only included data with consistent
OR directions from the five MR methods.

Reliability assessment

We employed MR-Egger regression to examine whether
pleiotropy exists in the IV and whether it affects the
results. If the MR-Egger intercept is near 0 or p>0.05,
it indicates no pleiotropic effect in the IV [23]. For the
IVW method, Cochran’s Q test was used to assess het-
erogeneity among the IVs [24], A p-value>0.05 suggests
the absence of heterogeneity. The MR-PRESSO global
test was applied to assess whether horizontal pleiotropy is
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present in the results. To eliminate random errors in IV
selection, we conducted leave-one-out analysis and single
SNP analysis to identify whether specific SNPs affected
our results.

All statistical analyses were conducted in R software
(version 4.3.3, R Foundation for Statistical Comput-
ing), using R packages including TwoSampleMR (ver-
sion 0.6.4), ieugwasr (version 1.0.0), gwasglue (version
0.0.0.9), reshape2 (version 1.4.4), circlize (version 0.4.16),
ComplexHeatmap (version 2.18.0), grid (version 4.3.3),
readr (version 2.1.5), forestploter (version 1.1.2), plyr
(version 1.8.9), dplyr (version 1.1.4), MRInstruments
(version 0.3.2), data.table (version 1.15.4), pacman (ver-
sion 0.5.1), BiocManager (version 1.30.23), and gwasvcf
(version 0.1.2), etc.

Results

MR analysis of CSF metabolites in relation to LBP

The IVW method identified a total of 15 CSF metabolites
significantly associated with LBP (P<0.05). These metab-
olites include 3 from the amino acid metabolism pathway,
1 from the carbohydrate metabolism pathway, 2 from the
short-chain organic acid metabolism pathway, 2 from the
fatty acid metabolism pathway, 1 from the nucleic acid
metabolism pathway, 1 from the heme metabolism path-
way, 2 from other specific metabolic pathways (related to
gut microbiota metabolism, galactose metabolism prod-
ucts, and metabolites possibly linked to sulfur amino acid
metabolism), and 3 unknown metabolites.

This study uses MR analysis to explore the causal rela-
tionship between CSF metabolites and LBP. The IVW
analysis revealed statistically significant correlations
between specific CSF metabolites and LBP, as shown
in Fig. 2. Data with consistent OR values from all five
MR methods were included, with the forest plot results
presented in Fig. 3. MR analysis showed that Biliru-
bin (z, z) levels (OR=0.9768, 95% CIL: 0.9569-0.9971,
P=0.0251), 5,6-dihydrothymine levels (OR=0.9010,
95% CI: 0.8301-0.9778, P=0.0125), Erythronate levels
(OR=0.8192, 95% CI: 0.7234-0.9276, P=0.0017), Man-
nitol/sorbitol levels (OR =0.9337, 95% CI: 0.8896 - 0.9801,
P=0.0056), and Butyrate (4:0) levels (OR=0.9769, 95%
CL: 0.9589-0.9952, P=0.0134) were inversely associ-
ated with the risk of LBP. The levels of 2 - hydroxyadi-
pate (OR=1.0144, 95% CI: 1.0006-1.0284, P=0.0414),
Gamma — glutamyl - alpha - lysine (OR=1.0221, 95% CI:
1.0044 - 1.0402, P=0.0143), Indoleacetate (OR=1.0237,
95% CI: 1.0041 - 1.0436, P=0.0174), N - acetylputrescine
(OR=1.1392, 95% CI: 1.0364-1.2522, P=0.0069), Pal-
mitoyl dihydrosphingomyelin (d18:0/16:0) (OR=1.0315,
95% CI: 1.0116-1.0518, P=0.0018), S-methylcyste-
ine (OR=1.0231, 95% CIL 1.0009-1.0457, P=0.0410),
2,3 —dihydroxy — 5-methylthio — 4-pentenoate  (dmtpa)
(OR=1.0927, 95% CI: 1.0060-1.1869, P=0.0356), and
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the other three unknown metabolites all showed a signifi-
cant positive correlation with the risk of LBP.

Reliability assessment results

In this study, Cochran’s Q test suggested the presence
of heterogeneity in some outcomes. Although PRESSO
tests indicated the possibility of horizontal pleiotropy in
some outcomes, MR-Egger intercept test showed no evi-
dence of horizontal pleiotropy affecting the relationship
between CSF metabolites and LBP (p>0.05) (Table 1).
Additionally, leave-one-out sensitivity analysis indicated
no single IV had an abnormal impact on the overall
results (see supplementary Fig. 1; supplementary Fig. 2),
proving the stability of the results.

Discussion

Over the past few decades, due to the rapid advance-
ments in proteomics and metabolomics, there has been
a broad and deep understanding of the pathogenesis
and treatment of LBP. However, most studies are ani-
mal or case-control studies, which can demonstrate the
association between metabolites and cerebrospinal fluid
(CSF), but cannot establish causality. Several studies have
identified differences in CSF composition between LBP
patients and control subjects [25-28], and anatomically,
CSF from the spinal canal is located near the interverte-
bral disc, supporting the validity of this method. Using
this approach, Lim et al. reported an elevation of neuro-
inflammatory markers in the CSF of chronic LBP patients
[29]. Compared to healthy controls, protein levels in the
CSF of individuals with chronic pain and/or disc degen-
eration have changed, suggesting that the differences
related to disc degeneration and pain are reflected in the
CSE. Therefore, identifying factors that may contribute
to or alleviate pain could potentially offer new avenues
for the treatment of LBP. This study explores the poten-
tial causal relationship between cerebrospinal fluid (CSF)
metabolites and LBP risk using two-sample Mendelian
randomization (MR) analysis, utilizing publicly available
summary statistics from the Fengen database. We believe
this is the first MR study to systematically evaluate the
causal role of human blood metabolites in the pathogen-
esis of LBP.

Existing observational studies predominantly focus on
the relationship between serum inflammatory factors or
serum metabolite levels and the risk of LBP [9, 16, 30,
31]. In comparison with serum, CSF has multiple advan-
tages in metabolomics research, particularly in neuro-
logical and central nervous system (CNS) diseases. CSF
is more directly related to the CNS, less complex, mini-
mally influenced by peripheral factors, and more likely
to contain disease-specific biomarkers for CNS disorders
[32]. Preclinical studies have confirmed that IL-8 levels
are increased in the CSF of chronic LBP patients with
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Fig. 2 Circular visualization of the causal relationship between CSF metabolites and LBP risk

intervertebral disc degeneration, and that Reparixin can
suppress lumbar pain behavior and disc inflammation
in mice33. This indicates that inflammatory factors in
CSF could be potential risk biomarkers for chronic LBP
and may guide clinical research [33].f{Metabolomics
research has shown alterations in the metabolic pro-
files of LBP patients, with the most frequently reported
metabolites being amino acids, lipids [34], polyamines,
choline, and nucleotides [35, 36]. Kameda et al. [37]. dis-
covered changes in brain metabolites in the anterior cin-
gulate cortex of chronic LBP patients and a correlation

between these metabolites and psychological states. Ear-
lier studies indicated no correlation between monoamine
metabolites in the CSF of LBP patients and pain. Among
the factors studied, height had the greatest influence on
the variation in 5-hydroxyindoleacetic acid concentra-
tions, while levels of 3-methoxy-4-hydroxyphenylethane-
diol increased with age [38], which contrasts with the
results of our study. Through a comprehensive analysis
of CSF metabolites, this study has further identified key
metabolites and metabolic pathways closely associated
with the pathogenesis and clinical phenotype of LBP,
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Trails
Bilirubin (z,z) levels

2-hydroxyadipate levels

5,6-dihydrothymine levels

Erythronate levels

Gamma-glutamyl-alpha-lysine levels

Indoleacetate levels

Mannitol/sorbitol levels

N-acetylputrescine levels

Palmitoyl dihydrosphingomyelin (d18:0/16:0) levels

S-methylcysteine levels

5 io-4-1

(dmtpa) levels

2,3~dihydro

Butyrate (4:0) levels

X-23593 levels

X-23739 levels

X-24699 levels

method nsnp pval OR(95%CI)
MR Egger 52 0.3693  0.9823 (0.9452-1.0210) -
Weighted median 52 0.3229  0.9841 (0.9535-1.0158) l:
Inverse variance weighted 52 0.0251 0.9768 (0.9569-0.9971) L]
Simple mode 52 0.3521  0.9692 (0.9080-1.0346) i:f
Weighted mode 52 0.5029  0.9742 (0.9029-1.0511) ':
MR Egger 127 0.8694  1.0022 (0.9763-1.0288) L]
Weighted median 127 0.7743  1.0031 (0.9818-1.0249) :l
Inverse variance weighted 127 0.0414  1.0144 (1.0006-1.0284) ]
Simple mode 127  0.9522 1.0014 (0.9560-1.0490) :O
Weighted mode 127 07723  1.0050 (0.9715-1.0398) :I
MR Egger 41 0.9609  0.9965 (0.8678-1.1443) -+
Weighted median 41 0.0479  0.9081 (0.8254-0.9991) l‘:
Inverse variance weighted 41 0.0125 0.9010 (0.8301-0.9778) 03
Simple mode 4 0.3003  0.9046 (0.7502-1.0909) e
Weighted mode 4 0.2882  0.9205 (0.7916-1.0704) -:-
MR Egger 29 0.0302  0.6844 (0.4946-0.9471) ——
Weighted median 29 0.1156  0.8611 (0.7147-1.0374) ﬂ-:‘
Inverse variance weighted 29 0.0017  0.8192 (0.7234-0.9276) —-3
Simple mode 29 0.4889  0.8900 (0.6426-1.2326) ——
Weighted mode 29 0.4610  0.8900 (0.6556-1.2081) —-‘:—
MR Egger 86 0.2070  1.0231 (0.9877-1.0597) :-
Weighted median 86 0.2635 1.0155 (0.9885-1.0432) L
Inverse variance weighted 86 0.0143  1.0221 (1.0044-1.0402) -
Simple mode 86 0.9708  1.0010 (0.9497-1.0551) +
Weighted mode 86 0.5762  1.0124 (0.9697-1.0571) :l
MR Egger 37 02747  1.0220 (0.9834-1.0622) .
Weighted median 37 02458 1.0161 (0.9890-1.0440) .
Inverse variance weighted 37 0.0174  1.0237 (1.0041-1.0436) -
Simple mode 37 0.5999  1.0133 (0.9650-1.0640) *
Weighted mode 37 0.8232  1.0046 (0.9652-1.0456) :'
MR Egger 34 01514  0.9440 (0.8743-1.0194) -
Weighted median 34 0.2103  0.9545 (0.8873-1.0267) -
Inverse variance weighted 34 0.0056  0.9337 (0.8896-0.9801) -:
Simple mode 34 0.5437  0.9583 (0.8365-1.0979) -
Weighted mode 34 0.0970  0.9398 (0.8751-1.0092) '-é
MR Egger 27 0.5071  1.1028 (0.8294-1.4664) —%—-—
Weighted median 27 0.0117  1.1850 (1.0385-1.3521) -
Inverse variance weighted 27 0.0069  1.1392 (1.0364-1.2522) 3+
Simple mode 27 0.0402  1.3074 (1.0251-1.6675) i—l—
Weighted mode 27 0.0323  1.3124 (1.0369-1.6610) ——
MR Egger 35 0.1338  1.0358 (0.9904-1.0833) :'
Weighted median 35 0.2803  1.0159 (0.9872-1.0453) .
Inverse variance weighted 35 0.0018  1.0315(1.0116-1.0518) :l
Simple mode 35 0.3468  1.0256 (0.9737-1.0802) :0
Weighted mode 35 0.5926  1.0125 (0.9679-1.0592) *
MR Egger 20 0.4485  1.0361 (0.9472-1.1333) -:G-
Weighted median 20 0.1467  1.0215 (0.9926-1.0512) "
Inverse variance weighted 20 0.0410  1.0231 (1.0009-1.0457) :-
Simple mode 20 0.3079  1.0275 (0.9767-1.0810) :l
Weighted mode 20 0.3492  1.0225 (0.9771-1.0699) *
MR Egger 24 0.2466  1.1195 (0.9296-1.3482) *:-'—
Weighted median 24 0.0587  1.1091 (0.9962-1.2349) -
Inverse variance weighted 24 0.0356  1.0927 (1.0060-1.1869) \r
Simple mode 24 0.1300  1.1548 (0.9649-1.3820) v:-k
Weighted mode 24 0.2413  1.1079 (0.9375-1.3092) T—
MR Egger 197  0.0857  0.9662 (0.9293-1.0046) l:
Weighted median 197  0.0678 0.9742 (0.9472-1.0019) -:
Inverse variance weighted 197  0.0134  0.9769 (0.9589-0.9952) L]
Simple mode 197  0.6505 0.9841 (0.9181-1.0547) i:
Weighted mode 197 04926  0.9841 (0.9401-1.0302) »
MR Egger 16 0.6066  1.0560 (0.8622-1.2935) —‘:'—
Weighted median 16 0.3959  1.0623 (0.9239-1.2215) -%-—
Inverse variance weighted 16 0.0216  1.1218 (1.0170-1.2373) -
Simple mode 16 0.6800 1.0463 (0.8472-1.2923) —-—
Weighted mode 16 0.4503  1.0619 (0.9123-1.2360) ——
MR Egger 90 0.1661  1.0350 (0.9862-1.0861) :'
Weighted median 90 0.0195  1.0473 (1.0075-1.0887) :-
Inverse variance weighted 90 ~ 0.0055  1.0408 (1.0118-1.0707) 3
Simple mode 90 0.4171  1.0353 (0.9525-1.1254) :'-
Weighted mode 90 0.0538  1.0594 (0.9998-1.1225) :P
MR Egger 32 0.2053  1.1161 (0.9451-1.3179) T
Weighted median 32 0.3167  1.0511 (0.9534-1.1587) :‘-
Inverse variance weighted 32 0.0417  1.0820 (1.0030-1.1673) -
Simple mode 32 06166 1.0501 (0.8689-1.2691) -
Weighted mode 32 0.5502  1.0562 (0.8845-1.2611) ——
T 1
1 2

Fig. 3 Forest plot of the causal effect of CSF metabolites on LBP risk

offering a new perspective for understanding the bio-
chemical foundation of LBP.

This study encompasses a broad range of genetic
variables and systematically analyzes the relationship
between CSF metabolites and genetic factors associated
with LBP in the Finnish database. However, the study
also has some limitations. First, the sample size used is

relatively small, and further enrichment of metabolite
data is required. Secondly, the GWAS database primar-
ily consists of data from European populations, making it
unclear whether the findings can be generalized to other
ethnic groups. Lastly, due to the limited scope of metab-
olite types, we were unable to conduct enrichment or
pathway analyses on all relevant metabolites, which may
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Table 1 The result of heterogeneity test and horizontal pleiotropic test

Page 7 of 9

Exposure Outcomes Heterogeneity test MR-PRESSO Horizontal pleiotropic test

Method Q Q_df Q_pval P for global egger_ SE p-
test intercept value

Bilirubin (z, 2) levels LBP MR Egger 473046 50 0.5822 0.566 -0.0015 0.0045 0.7360
vw 474196 51 0.6167

2 —hydroxyadipate levels MR Egger 1494223 125 0.0674 0.077 0.0042 0.0040 0.2905
VW 150.7694 126 0.0656

5,6 —dihydrothymine levels MR Egger 640293 39 0.0070 0.003 -0.0090 0.0051 0.0881
VW 69.0528 40 0.0030

Erythronate levels MR Egger 236540 27 0.6494 0.648 0.0070 0.0060 0.2508
vw 25.0312 28 0.6261

Gamma —glutamyl —alpha —lysine MREgger 904649 84 0.2955 0332 -0.0003 0.0042 09524

levels
VW 904688 85 03222

Indoleacetate levels MREgger 238684 35 0.9227 0.945 0.0005 0.0055 0.9255
VW 238772 36 0.9394

Mannitol/sorbitol levels MREgger  36.1861 32 0.2794 0.353 -0.0017 0.0046 0.7176
VW 36.3366 33 03159

N —acetylputrescine levels MREgger 282102 25 0.2983 0.383 0.0017 0.0073 08142
VW 282738 26 0.3451

Palmitoyl dihydrosphingomyelin MR Egger 318721 33 05231 0572 -0.0012 0.0057 0.8412

(d18:0/16:0) levels
VW 319129 34 0.5703

S—methylcysteine levels MR Egger 232764 18 0.1802 0.231 -0.0031 00109 0.7785
VW 233819 19 0.2209

2,3 —dihydroxy —5—methyl- MREgger 268024 22 0.2188 0.302 -0.0017 0.0059 0.7769

thio —4—pentenoate (dmtpa)

levels
VW 269027 23 0.2601

Butyrate (4:0) levels MR Egger 2614166 195 0.0010 0.001 0.0028 0.0045 0.5319
VW 2619422 196 0.0011

X—23,593 levels MREgger 170410 14 0.2540 0331 0.0046 00069 0.5135
VW 17.5880 15 0.2849

X—23,739 levels MR Egger 1136934 88 0.0341 0.03 0.0011 0.0038 0.7764
VW 113.7982 89 0.0393

X—24,699 levels MR Egger  43.1524 30 0.0568 0.072 -0.0029 0.0069 0.6832
VW 433966 31 0.0687

Q: Cochran'’s Q test; Q_df: Degrees of freedom for Cochran’s Q test; IVW: Inverse variance weighted

have resulted in missing some potential metabolite-LBP
relationships. While MR analysis has assisted us in iden-
tifying CSF metabolites linked to LBP, prospective stud-
ies are still needed to further investigate their potential

mechanisms.

Conclusion

This two-sample MR study highlights the significant role
of CSF metabolites in the risk of LBP. Twelve metabo-
lites were found to be significantly causally associated
with LBP, providing insight into the complex interac-
tions between metabolic products and cerebrospinal fluid
in the pathogenesis and progression of LBP. Moreover,
metabolic biomarkers in cerebrospinal fluid can more
directly reflect the condition of the central nervous sys-
tem compared to blood metabolites, offering valuable

research potential. These findings contribute to under-
standing the potential biological mechanisms of LBP and
pave the way for future explorations of targeted thera-

peutic interventions.
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