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Abstract 

Background  Disulfidptosis, a novel form of metabolism-related regulated cell death, is a promising intervention 
for cancer therapeutic intervention. Although aberrant expression of long‐chain noncoding RNAs (lncRNAs) expres-
sion has been associated with pancreatic carcinoma (PC) development, the biological properties and prognostic 
potential of disulfidptosis-related lncRNAs (DRLs) remain unclear.

Methods  We obtained RNA-seq data, clinical data, and genomic mutations of PC from the TCGA database, and then 
determined DRLs. We developed a risk score model and analyzed the role of risk score in the predictive ability, 
immune cell infiltration, immunotherapy response, and drug sensitivity.

Results  We finally established a prognostic model including three DRLs (AP005233.2, FAM83A-AS1, and TRAF3IP2-
AS1). According to Kaplan–Meier curve analysis, the survival time of patients in the low-risk group was significantly 
longer than that in the high-risk group. Based on enrichment analysis, significant associations between metabolic pro-
cesses and differentially expressed genes were assessed in two risk groups. In addition, we observed significant differ-
ences in the tumor immune microenvironment landscape. Tumor Immune Dysfunction and Rejection (TIDE) analysis 
showed no statistically significant likelihood of immune evasion in both risk groups. Patients exhibiting both high risk 
and high tumor mutation burden (TMB) had the poorest survival times, while those falling into the low risk and low 
TMB categories showed the best prognosis. Moreover, the risk group identified by the 3-DRLs profile showed signifi-
cant drug sensitivity.

Conclusions  Our proposed 3-DRLs-based feature could serve as a promising tool for predicting the prognosis, 
immune landscape, and treatment response of PC patients, thus facilitating optimal clinical decision-making.

Keywords  Disulfidptosis, Long noncoding RNA (lncRNA), Pancreatic carcinoma, Prognostic signature, Immune 
microenvironment, Drug sensitivity

Introduction
Pancreatic carcinoma (PC) is a common malignant 
tumor that has increased in incidence over the past few 
years, accounting for approximately 2% of all cancers 
and causing 5% of cancer-related deaths [1]. PC is one 
of the most aggressive and chemo-resistant cancers, 
mainly due to the diversity of genetic mutations leading 
to a highly heterogeneous disease. Based on that early 
surgical resection is currently the only effective treat-
ment, for PC patients, early diagnosis and timely surgical 
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intervention are urgent. However, most patients have 
no obvious symptoms as the disease develops and pro-
gresses to advanced stages. Traditional clinical predictive 
factors such as tumor stage (T), lymph node involve-
ment (N), and distant metastasis (M) are widely used to 
predict prognosis and aid in the treatment [2]. However, 
with advances in molecular biology and high-throughput 
technologies, it is critical to develop reliable and effec-
tive predictive biomarkers to identify unique subgroups 
of PC patients. These biomarkers will become indispen-
sable tools to guide personalized and favorable treatment 
strategies.

Accidental cell death (ACD) and regulatory cell death 
(RCD) are common types of cell death [3]. In recent years, 
many emerging models of RCD have attracted great 
attention and a new mode of cell death was identified by 
Liu named disulfidptosis [4]. Most cancer cells primar-
ily obtain cysteine by uptake of extracellular cysteine (an 
oxidized cysteine dimer) through the solute carrier fam-
ily 7 member 11 (SLC7A11) [5–7]. After entering the cell, 
each cysteine is reduced to two molecules of cysteine 
in an NADPH dependent reaction, and subsequently 
cysteine is used for the biosynthesis of glutathione and 
other metabolic processes, such as protein synthesis [8]. 
SLC7A11 has a recognized role in maintaining intracellu-
lar glutathione levels and protecting cells from oxidative 
stress-induced cell death (such as ferroptosis) [9–11], and 
SLC7A11 is often overexpressed in cancer [12–14], which 
can protect them from ferroptosis, but Gan et al. found 
that it also has vulnerabilities [15]. Cysteine contains 
active disulfide bonds and can react with various proteins 
throughout the cell, exhibiting toxic effects. Cells use 
the reducing agent NADPH to neutralize cysteine, while 
NAPDH is mainly provided by glucose. Therefore, cells 
overexpressing SLC7A11 are addicted to glucose, and a 
lack of this energy source can lead to toxic accumulation 
of cysteine and trigger disulfide death [4]. Gan’s research 
team found that the accumulation of cysteine leads to the 
accumulation of disulfide bonds in the actin cytoskeleton, 
ultimately resulting in cell death [15]. Inhibitors of cell 
apoptosis, ferroptosis, and other cell death mechanisms 
have no effect on this process, indicating that disulfide 
mediated cell death is a unique pathway. Disulfidptosis 
provides a new pathway for destroying tumor cells that 
develop resistance to ferroptosis, while minimizing col-
lateral toxicity to the greatest extent possible. Moreover, 
this study has shown that disulfidptosis also has the abil-
ity to affect immune infiltration, suggesting the occur-
rence of disulfidptosis may provide a new approach for 
tumor treatment.

Several recent studies have constructed predictive 
disulfidptosis-related genes (DRGs) or disulfidptosis-
related lncRNAs (DRLs) models, which were stable and 

reliable for predicting cancer prognosis [16, 17]. In this 
study, a reliable marker for DRLs was established for pre-
dicting prognosis and guiding clinical treatment. Survival 
time prediction, biological properties, immune infiltra-
tion, tumor mutational burden (TMB), and drug respon-
siveness were investigated using a predictive model of 
three DRLs. Our findings are expected to provide new 
perspectives and approaches for therapy strategies of PC 
patients.

Materials and methods
Data acquisition and processing
Consolidated transcriptome expression matrix and clini-
cal data of PC patients were obtained from the Cancer 
Genome Atlas (TCGA) database (accessed on 11 Sep-
tember 2023)), which included 179 tumor specimens and 
4 normal samples.

Identification the expression matrix 
of disulfidptosis‑related genes
A total of 24 DRGs, including FLNA, FLNB, MYH9, 
TLN1, ACTB, MYL6, MYH10, CAPZB, DSTN, IQGAP1, 
ACTN4, PDLIM1, CD2AP, INF2, SLC7A11, SLC3A2, 
NUBPL, NDUFS1, GYS1, OXSM, LRPPRC, NDUFA11, 
NCKAP1, and RPN1, were summarized in a related 
review [4]. The DRGs and DRLs expression matrix was 
retrieved and utilized to draw the Sankey diagram.

Construction and validation of prognostic features
PC patients were randomized in a 1:1 ratio into training 
and testing groups [18]. DLRs resulted from univariate 
Cox regression were kept for the subsequent stage. In 
addition, a total of three prognostic DRLs were obtained 
by the least absolute shrinkage and selection operator 
(LASSO) and multivariate Cox regression analysis. After-
wards, we developed the prognostic model utilizing the 
three DRLs. Based on the median risk score, patients in 
the training group, test group, and all group were catego-
rized into low- and high-risk groups respectively. Over-
all survival (OS) was predicted by Kaplan-Meyer (K-M) 
survival analysis for the high-risk and low-risk groups. 
Moreover, the model’s accuracy was assessed using the 
receiver operating characteristic curve (ROC), nomo-
grams, and calibration curves.

Analysis of functional enrichment
To explore potential biological functions among clus-
ters, we performed gene set variation analysis. Functional 
enrichment requirements were derived from Molecular 
Signatures Database (MSigDB) data. The “GSVA” pack-
age was used to identify genomic enrichment pathways. 
Gene Ontology (GO) and the Kyoto Encyclopedia of 
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Genes and Genomes (KEGG) and Gene Set Enrichment 
Analysis (GSEA) analysis were performed [19].

Analysis of tumor microenvironment and immune 
infiltration
To investigate the correlation between the subtypes iden-
tified by clustering and the presence of tumor microen-
vironment (TME), we used an estimation method to the 
scores of all samples. We derived TME scores, matrix 
scores, and immune scores for all PC patients. We used 
GSEA to assess differential immune profiles in clustering. 
We used “GSEABase” and “GSVA” for immune assess-
ment. We analyzed immune-related genes between clus-
ters and plotted the results as box plots. Tumor Immune 
Dysfunction and Exclusion (TIDE) algorithm was used to 
assess the potential efficacy of tumor immunotherapy.

Analysis of tumor mutation and drug sensitivity
Tumor mutation burden (TMB) generates new immu-
nogenicity and is thought to predict immune checkpoint 
blockade response [20]. We mapped the mutation pro-
files of the two risk groups to visualize the frequency and 
type of mutated genes and used violin plots to visualize 
the differences between the TMB risk groups. Expression 
data and sensitivity data for targeted drugs were obtained 
from Genetics of Drug Sensitivity in Cancer (GDSC). We 
analyzed the differences in the sensitivity of the two risk 
groups to different therapeutic drugs.

Statistical analysis
Correlation analysis was performed with the Pearson 
and Spearman correlation test. Survival analysis was 
performed with the K-M plot and compared by the log-
rank method. Finally, the univariate and multivariate Cox 
regression analysis determined the independent prognos-
tic predictors. p < 0.05 was set as the cut-off value. All sta-
tistical analyses were conducted with R 4.3.1.

Results
Characterization of DRLs based molecular subgroups in PC
One hundred seventy nine PC patients with compre-
hensive clinical data from the TCGA database were 
randomly allocated into two groups. The clinical charac-
teristics of the patients in the two groups were listed in 
Table 1, which showed no significant differences between 
the two groups. Twenty-four DRGs identified based on 
the literature review and previous studies were used to 
determine DRLs (Fig. 1).

Recognition of a prognostic DRLs signature
A total of twenty-one DRLs were significantly associated 
with patients’ OS in the training group by through uni-
variate Cox regression analyses (p < 0.05, Fig. 2A). Sixteen 

DRLs had a hazard ratio (HR) greater than 1, which indi-
cated that they were poor prognostic predictors, whereas 
the remaining five DRLs were protective factors with 
HR lower than 1. Furthermore, three candidate lncR-
NAs were finalized by LASSO and the multivariate Cox 
regression method (Fig.  2B–C), including AP005233.2, 
FAM83A − AS1, and TRAF3IP2 − AS1. Additionally, 
Fig. 2D showed the relationships between the three DRLs 
and DRGs.

The risk score could be an independent prognostic factor 
and assist in predicting clinical outcomes for PC patients
Based on the median risk score for each dataset, patients 
were categorized into high-risk and low-risk groups for 
further survival analysis. Figure 3 showed the risk scores 
and survival of patients in the training, testing and all 
groups. The results showed a significant correlation 
between risk scores and patient survival in all datasets. 
Patients in the high-risk group had significantly lower 

Table 1  The clinical characteristics of PC patients in training and 
testing groups

Covariates Type Total Test 
cohort

Train 
cohort

P-value

Age  < = 65 94 (52.81%) 45 (50.56%) 49 (55.06%) 0.6524

 > 65 84 (47.19%) 44 (49.44%) 40 (44.94%)

Gender FEMALE 80 (44.94%) 40 (44.94%) 40 (44.94%) 1

MALE 98 (55.06%) 49 (55.06%) 49 (55.06%)

Grade G1 31 (17.42%) 17 (19.1%) 14 (15.73%) 0.5962

G2 95 (53.37%) 50 (56.18%) 45 (50.56%)

G3 48 (26.97%) 20 (22.47%) 28 (31.46%)

G4 2 (1.12%) 1 (1.12%) 1 (1.12%)

unknow 2 (1.12%) 1 (1.12%) 1 (1.12%)

Stage Stage I 21 (11.8%) 12 (13.48%) 9 (10.11%) 0.1653

Stage II 147 
(82.58%)

70 (78.65%) 77 (86.52%)

Stage III 3 (1.69%) 1 (1.12%) 2 (2.25%)

Stage IV 4 (2.25%) 4 (4.49%) 0 (0%)

unknow 3 (1.69%) 2 (2.25%) 1 (1.12%)

T T1 7 (3.93%) 3 (3.37%) 4 (4.49%) 0.8853

T2 24 (13.48%) 13 (14.61%) 11 (12.36%)

T3 142 
(79.78%)

70 (78.65%) 72 (80.9%)

T4 3 (1.69%) 1 (1.12%) 2 (2.25%)

unknow 2 (1.12%) 2 (2.25%) 0 (0%)

M M0 80 (44.94%) 39 (43.82%) 41 (46.07%) 0.1366

M1 4 (2.25%) 4 (4.49%) 0 (0%)

unknow 94 (52.81%) 46 (51.69%) 48 (53.93%)

N N0 49 (27.53%) 28 (31.46%) 21 (23.6%) 0.3347

N1 124 
(69.66%)

59 (66.29%) 65 (73.03%)

unknow 5 (2.81%) 2 (2.25%) 3 (3.37%)
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OS compared to patients with low-risk scores (p < 0.05, 
Fig. 3C). In addition, the mortality rate increased as the 
risk score increased (Fig.  3A-C). Univariate and mul-
tivariate Cox regression analyses showed that the risk 
group categorized according to the three DRLs features 
was identified as an independent prognostic factor for PC 
patients compared to other clinicopathological features 
(Fig. 3D).

Validation of the 3‑DRLs predictive signature 
and construction of a nomogram combining clinical 
characteristics
During the 1-, 3-, and 5-year follow-up periods, the ROC 
curves demonstrated area under the curve (AUC) values 
of 0.704, 0.775, and 0.692, respectively (Fig.  4A). Addi-
tionally, an ROC curve was generated to verify that the 
risk score had higher prognostic accuracy compared to 
other clinical variables such as age, gender, stage, and 
grade (Fig. 4B). AUC for the risk score was 0.775, indicat-
ing strongest predictive capability (Fig. 4B). Moreover, we 
calculated the C-index through bootstrap resampling and 
found that the line map based on the 3-DRLs predictive 
signature had superior accuracy (Fig. 4C).

To improve the utility of the features, we created a 
predictive nomogram by summing the assigned scores 
of relevant clinical factors and risk scores on a points 

scale. This allowed for accurate prediction of the prob-
ability of survival. Because of the ultra-short survival of 
PC patients and limited sample size, we excluded stage 
III patients and illustrated the selected patient’s prob-
ability of 1-, 3-, and 5-years OS in Supplementary Fig. 1. 
Additionally, we verified the consistency of the nomo-
gram predictions with the actual measured outcome 
were validated by the calibration curves. As illustrated 
in Supplementary Fig. 2, the results of the study demon-
strated strong agreement between clinical outcomes and 
predicted values. In conclusion, these results suggest that 
nomograms combining the predictive and clinical fea-
tures of 3-DRLs can accurately predict the clinical prog-
nosis of PC patients.

Prediction of clinical prognosis in patients in high‑ 
and low‑ risk groups
Based on the predictive features of 3-DRLs, we compared 
the survival rates of PC patients in the high-risk and low-
risk groups according to age, gender, stage, and TNM 
staging (Fig. 5). The results showed that OS was signifi-
cantly shorter in the high-risk group than in the low-risk 
group, except for M1 (Fig. 5F) and G3-4 (Fig. 5G). One 
possible explanation is that the prognosis of advanced 
PC is poor, and therefore the number of M1 and G3-4 
patients is relatively small, which may lead to a certain 

Fig. 1  The Sankey relation between DRGs and DRLs
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degree of error in the results. In conclusion, these results 
suggest that the 3-DRLs prediction model has great 
potential for predicting PC prognosis and can be applied 
to a variety of clinical variables.

Analysis of biological functions by GO, KEGG, and GSEA
PCA was used to visualize the difference in distribution 
between high- and low- risk groups. The results showed 
no significant difference in the expression patterns of 
DRGs, and DRLs between the two risk groups (Fig. 6A-
B). However, the 3-DRLs used in the predictive model 
exhibited the highest discriminatory power in distin-
guishing between high- and low-risk patients (Fig. 6C).

To investigate the biological functions of DRGs, we 
performed GO and KEGG enrichment. In terms of 
biological process (BP), DEGs play important roles in 
“modulation of chemical synaptic transmission”, “reg-
ulation of trans-synaptic signaling”, “signal release” 
and “production of molecular mediator of immune 
response”. In the field of cellular components (CC), 
“external side of plasma membrane”, “plasma membrane 
signaling receptor complex” and “neuronal cell body” 
are significantly enriched. In addition, molecular func-
tion (MF) analysis showed that deg was significantly 
enriched in “antigen binding”, “gated channel activity” 
and “monoatomic ion gated channel activity” (Fig. 6D). 

Fig. 2  Identification of the prognostic features of pancreatic carcinoma (PC) linked to DRLs. A Univariate cox forest map showing the top 21 
prognostic DRLs. B LASSO coefficient profiles of the expression of DRLs. C Selection of the penalty parameter in the LASSO model via tenfold 
cross-validation. D The relationships between the three DRLs and DRGs. *, p < 0.05; **, p < 0.01; ***, p < 0.001



Page 6 of 17Shi et al. Hereditas          (2025) 162:26 

These findings suggest that DEGs were involved in 
metabolism-related biological functions. The KEGG 
results were consistent with GO analysis, showing sig-
nificant enrichment in “Neuroactive ligand-receptor 
interaction”, “Cytokine-cytokine receptor interaction”, 

“Calcium signaling pathway”, “cAMP signaling path-
way”, and “Cell adhesion molecules” (Fig. 6E). In addi-
tion, by GSEA analysis, the pathways associated with 
poor tumor prognosis in the high-risk group were 
found to be related to “Base excision repair”, “Cell 

Fig. 3  Evaluation and validation of the independent prognostic ability of 3-DRLs signature model in training, testing, and all sets. A The distribution 
of patient with increasing risk scores. B The survival time of patients and risk scores. C The K-M survival analysis of survival status and overall survival 
(OS) of PC patients between two risk groups (The red line represents high-risk groups, and the blue line represents low-risk groups). D A univariate 
Cox regression analysis and multivariate Cox regression analysis of clinical variables and risk score
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cycle”, “Oxidative phosphorylation”, “Proteasome”, and 
“Retinol metabolism” (Fig. 6F).

Analysis of TME characteristics and immune infiltration
In order to clarify the characteristics of the two disulfidp-
tosis subtypes of TME, the immunity score and gene 
expression between the two groups were calculated in 
this study. Consist with previous observations, immune 
score, stromal score and ESTIMATE score were lower in 
the high-risk group than in the low-risk group (Fig. 7A). 
We analyzed the proportion of immune infiltration 
between different PC risk groups and found that regu-
latory T cells and macrophages infiltration were more 
abundant in the high-risk group while naive B cells and 
CD8 T cells were more abundant in the low-risk group 
(Fig. 7B). We quantified the enrichment scores of differ-
ent immune cell subgroups to investigate the correlation 
between risk score and immune functions. The scores of 
immune-related molecules such as Checkpoint, CCR, 
and Inflammation-promoting molecules were signifi-
cantly decreased in the high-risk group compared to the 
low-risk group (Fig. 7C).

Analysis of TMB characteristic and drug sensitivity
To investigate the differences in cancer-related gene 
mutations between two risk groups, we obtained somatic 
mutation data from the TCGA database. As shown in 
Fig.  8A-B, the examination identified fifteen genes with 
the highest mutation frequencies, among which the 
KRAS, TP53, CDKN2A, and SMAD4 genes had high 
mutation frequencies in both risk groups. Totally, there 
was significant difference in TMB between the two 
groups (Fig.  8C). Moreover, subgroup analysis com-
bining TMB and risk scores was effective in predicting 
patient prognosis. Compared with the other groups, the 

high TMB and high-risk groups had the worst prognosis, 
whereas the low TMB and low-risk groups had the long-
est survival time (Fig. 8D-E).

Immune checkpoint blockade (ICB) has made signifi-
cant progress in cancer treatment [21, 22]. However, ICB 
therapy is effective in only a subset of patients. To fur-
ther explore the role of risk scores in immunotherapy, 
we applied the TIDE score to assess potential immune 
dysfunction in tumors and regional lymph nodes. The 
results showed that patients in the two risk groups have 
no significant probability of responding to immuno-
therapy (Fig.  8F). We also analyzed the sensitivity of 
chemotherapy drugs between two risk groups. Several 
chemotherapy drugs were widely used in clinical, render-
ing Entinostat, Linsitinib, Olaparib, Ribociclib, Ruxoli-
tinib, Temozolomide, Venetoclax, Vincristine, Vorinostat, 
and Zoledronate were more suitable for patients in high-
risk category (Fig.  9). Conversely, Axitinib, Selumetinib, 
Trametinib and Ulixertinib were indicated their higher 
sensitivity to patients classified as low-risk (Fig. 9).

Discussion
PC, is a malignant tumor with a poor prognosis, and it 
is a major challenge to improve its overall survival rate. 
In recent years, the incidence of pancreatic cancer has 
been on the rise globally, especially among young people. 
Although screening is an important method of detect-
ing patients with early-stage PC, it is not recommended 
for the general population due to the low incidence of 
PC and the small benefit of screening. In addition, the 
accuracy of existing screening methods is not satisfactory 
and some of them may have negative effects on human 
health, such as pain and anesthesia-related adverse reac-
tions after endoscopic ultrasonography (EUS) exami-
nation, acute pancreatitis, and even hospitalization 

Fig. 4  Validation of the predictive model and construction of a nomogram combining clinical characteristics. A The ROC curves show 
the predictive accuracy in 1-, 3-, and 5-year of the predictive risk model. B The ROC curves show the predictive accuracy of the predictive risk model 
and clinicopathological characteristics. C ROC curves of the nomogram and clinical features demonstrating superior prediction of prognosis
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after endoscopic retrograde cholangiopancreatography 
(ERCP), as well as anxiety and psychological effects [23].

Many new forms of RCD have attracted great attention, 
such as ferroptosis, cuproptosis, autophagy-dependent 
cell death, lysosome-dependent cell death, endogenous 
cell death and reticulocyte death, all of which are impor-
tant for TME therapy [24]. Ferroptosis has the ability to 
activate tumor immune cells by transmitting chemotac-
tic signals, and ferroptosis inducers play a role in sup-
pressing tumor immunotherapy [25]. Previous literature 

suggested that gemcitabine and cisplatin combination 
therapy induced ferroptosis in a GSH-independent man-
ner in pancreatic ductal adenocarcinoma [26]. Moreover, 
ferroptosis was shown to be associated with sensitivity to 
gemcitabine in PC [27–29]. A recent study showed that 
high expression of SLC7A11 accelerates intracytoplasmic 
NADPH depletion, especially under glucose starvation, 
which may inhibit ferroptosis and induce a new form of 
cell death, namely disulfidptosis [4]. However, because of 
limited studies on the application of disulfidptosis in PC, 

Fig. 5  The K—M survival analysis of low- and high-risk patients with different clinical variables. A Age (> 65, ≤ 65); B Gender (Male, Female); C Stage 
(Stage I-II, Stage III-IV); D T stage (T1-2, T3-4); E N stage (N0, N1); F M stage (M0, M1); G Grade (G1-2, G3-4). The red line represents high-risk groups, 
and the blue line represents low-risk groups
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Fig. 6  Biological functional and pathway enrichment analysis of the DRLs prognostic signature. A PCA about DRGs of patients in two risk groups. 
B PCA about DRLs of patients in two risk groups. C PCA about the three DRLs used in the predictive model of patients in two risk groups. D 
GO analysis reveals the diversity of BP, CC, and MF. E KEGG analysis shows the significantly enriched pathways. F GSEA analysis demonstrates 
the enriched pathways in two risk groups
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Fig. 7  Analysis of immune cell infiltration in PC patients. A Differential expression of tumor microenvironment scores (Stromal Score, Immune 
Score, and ESTIMATE Score) between two risk groups. B Infiltration abundance of tumor immune cells in two risk groups. C Differential expression 
of immune functions scores between two risk groups. *, p < 0.05; **, p < 0.01; ***, p < 0.001
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further studies are necessary to explore its potential in 
cancer therapy.

Personalized medicine is increasingly utilizing bio-
markers such as lncRNAs, which provide more accu-
rate diagnosis, prognosis, and treatment options [30]. 
LncRNAs extensively regulate the biological behaviors 
of PC, such as promoting tumor angiogenesis, metasta-
sis, proliferation, immune escape, and metabolic repro-
gramming [31–35]. In this study, we generated a DRL 
signature to predict the prognosis and immune micro-
environmental status of PC patients. The results showed 
that the risk score of this model was an independent pre-
dictor of PC patients. Combined with the evaluation of 
ROC and nomogram, it suggested that the constructed 
DRLs signature can accurately predict the prognosis of 
PC patients. Among the three DRLs used for charac-
terization, AP005233.2 was found to be associated with 
metabolism and patient prognosis in intrahepatic chol-
angiocarcinoma [36], lung adenocarcinoma [21] and PC 
[22]. Wang et  al. demonstrated FAM83A-AS1 inhibited 
Hippo pathway activation to active YAP to promote the 
proliferation and EMT of pancreatic cancer cells. Besides, 
Hippo pathway play an important role in regulating cell 
proliferation, regeneration and organ size control [37]. 

FAM83A-AS1 was also a necroptosis-related lncRNA 
regulated malignancy and glycolysis in lung adenocarci-
noma [38, 39]. TRAF3IP2 − AS1, was related to ferropto-
sis [40], pyroptosis [41] and N6-methyladenosine (m6A) 
[42] and has utility in predicting PC prognosis, depict-
ing the tumor immune microenvironment and guiding 
immunotherapy. TRAF3IP2-AS1 is a hub m6A-lncRNA 
with a dysregulated expression pattern in the panel, 
which can inhibit the proliferation of PC tumors in vitro 
and in vivo. Xu et al. found that knocking out TRAF3IP2-
AS1 reduced cell apoptosis and altered cell cycle distri-
bution. After gene knockout, the activity of caspase 3 
and caspase 9 was significantly reduced, indicating that 
TRAF3IP2-AS1 may affect PC cell apoptosis through the 
mitochondrial pathway [42].

Based on these three DRLs, we developed a new clini-
cal prognostic model that is more suitable for clinical 
application than some of the signatures already identi-
fied. In our study, we randomized the PC cohort into 
training and testing subsets. Subsequently, patients were 
categorized into high- and low-risk groups based on 
their respective risk scores calculated using the devel-
oped model. In terms of survival curves, the high-risk 
group had a worse prognosis which was consistent with 

Fig. 8  Mutation profile and drug sensitivity analysis of the high- and low-risk groups. A-B Waterfall plots of somatic mutations in tumors in two 
risk groups. C Analysis of the difference for TMB between two risk groups. D The K—M survival analysis of PC patients between high- and low-TMB 
groups. E The K-M survival analysis of PC patients regarding TMB combined with risk score. F The violin plot of TIDE analysis for two risk groups
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Fig. 9  The relationship between risk groups and drug sensitivity
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the clinical subgroup analysis (except for M1 and G3-4). 
The ability of risk scores to predict the prognosis of PC 
patients was more prominent than traditional TNM stag-
ing and other clinicopathologic features, as confirmed 
by ROC curves, C-index, and K-M survival curves. In 
addition, a nomination graph containing clinical vari-
ables and risk scores showed that compared to existing 
clinical staging systems, risk scores have stronger pre-
dictive power. The risk score is not related to important 
prognostic factors for PC, and we used median values to 
divide patients into different groups. Using median for 
classification is considered a more practical and objective 
method, especially compared to the optimal cutoff val-
ues, which may only perform well in specific populations 
and lack universality.

To further understand their biological properties, we 
performed GO and KEGG analysis. GO analysis showed 
that DRLs were mainly associated with cellular signal-
ing, suggesting that they are closely associated with cel-
lular metabolism, which is consistent with the fact that 
NADPH depletion and disulfide stress leading to the 
disulfide bond formation in protein molecules trigger-
ing disulfidptosis, for both are closely related to energy 
supply and cellular metabolism [43]. KEGG analysis 
showed that “Neuroactive ligand − receptor interaction”, 
“Cytokine − cytokine receptor interaction”, and “Calcium 
signaling pathway” were significantly enriched. Although 
neuroactive ligand-receptor interactions are primarily 
associated with neurological disorders, there is growing 
evidence that they are involved in cancer progression 
and metabolism. It has been shown that in PC, perineu-
ral invasion-triggered cholinergic signaling favors tumor 
growth by promoting an immune-suppressive microen-
vironment characterized by impaired CD8 T-cell infil-
tration and a reduced Th1/Th2 ratio [44]. Mechanisms 
by which Ca2+ channels act on tumors are complex and 
can affect tumor progression in several ways. Ca2+ has 
been reported to activate the NF-κB, NFAT and CREB 
pathways, thereby playing an important role in tumor 
immune cells and progression [45, 46]. In addition, 
according to GSEA analysis, the pathways associated 
with poor tumor prognosis were significantly enriched 
in the high-risk group, including “Base excision repair”, 
“Cell cycle”, “Oxidative phosphorylation”, “Proteasome”, 
and “Retinol metabolism” in terms of pathway.

Recent studies have shown that disulfidptosis is 
strongly associated with immune infiltration, with high 
disulfiram subtypes exhibiting higher immune scores [4]. 
The results indicate that patients with lower risk scores 
have more active TIME and more immune cell infiltra-
tion, which may be beneficial for immunotherapy [47]. 
Our findings were consistent with the previous view that 
a high degree of CD8 T cells and naïve B cells infiltration 

usually implies a better survival prognosis [48]. Simi-
lar to our model, three recent prognostic models in PC 
showed that low levels of CD8 T cells were associated 
with poor prognosis [49–51]. In addition, there was a sig-
nificant reduction of Th1 cells as key cells that generate 
a durable anti-tumor immune response in the high-risk 
group [52], which may contribute to the poorer progno-
sis of this group. The tumor immune environment is a 
complex environment, and in addition to immune cells, 
various factors such as immune checkpoints, regulatory 
cells, inflammatory factors, and tumor microenviron-
ment can influence the immune function. Although little 
is known about the immune regulatory function of Treg 
cells in such tumors, their presence in the tumor matrix 
is associated with T cell-mediated immune response sup-
pression and impaired immune surveillance [53]. The 
increase of Treg cells in tumors is also related to block-
ing the recruitment of CD8 + T cells and inhibiting the 
immunogenic function of antigen-presenting cells [54, 
55]. Pancreatic TME, especially infiltrating inflamma-
tory cells (mainly macrophages), is an important con-
tributing factor to PC aggressiveness and resistance to 
treatment [56]. Macrophages in TME are often referred 
to as tumor-associated macrophages and contain three 
phenotypes. Among them, M0 macrophages, as a non-
polarized subtype, aere an independent predictor of poor 
prognosis in PC patients [57, 58]. Tekin et al. discovered 
that M0 macrophages secreted matrix metalloprotease 
9 (MMP9) which induces mesenchymal transition in PC 
cells [59]. Although it is still unclear whether M0 mac-
rophages promote tumor growth by directly contacting 
tumor cells or by inhibiting T cell function, Xu et al. show 
that M0 macrophages can promote the growth of pan-
creatic cancer in vivo experiments [60]. Interestingly, we 
found that patients with low-risk scores simultaneously 
had higher stromal scores, immune scores, and ESTI-
MATE scores. Although the low-risk scoring group has 
more abundant infiltrating immune cells, a higher matrix 
score may indicate that infiltrating immune cells are 
more likely to be blocked by matrix components, such 
as extracellular matrix secreted by cancer fibroblasts [61, 
62]. The infiltration of these immune cells into tumor tis-
sue and their anti-tumor efficacy may be weakened [61].

Immunotherapy is becoming a prominent trend in 
anti-tumor treatment for various types of cancer, divided 
into the following main categories: immune checkpoint 
inhibitions (ICIs), Tumor vaccines, chimeric antigen 
receptor T cells (CAR-T), and non-specific immuno-
therapy [63, 64]. ICIs play a crucial role in maintaining 
appropriate immune responses and protecting healthy 
tissues from immune attacks under normal physiological 
conditions [65]. This involves regulating the recognition 
of antigens by T cell receptors through co stimulation or 
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inhibition of signal transduction [66]. ICIs therapy has 
shown encouraging progress in many malignant tumors 
and chemotherapy resistant cancers, as it has natural 
immunogenicity by infiltrating T cells into the TME and 
promoting cytotoxic signaling pathways [67]. According 
to reports, TIDE is an accurate method for predicting 
cancer patients’ response to ICI treatment [68]. Unfor-
tunately, however, according to the TIDE results, the 
probability of immune escape was not significantly dif-
ferent between the two risk groups, which may explain 
why single-agent programmed death 1 ligand (PD-L1) or 
cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) 
inhibitors is ineffective for PC [69–71].

Duplicate somatic mutations in specific genes have 
been identified as potential cancer initiators [72, 73], 
among which, KRAS, CDKN2A, SMAD4, and TP53 are 
frequently mutated in PC [74]. Previous studies have 
shown that KRAS mutations first lead to pancreatic pre-
cancerous lesions, followed by inactivation of CDKN2A, 
TP53, and SMAD4 [75, 76]. Recent studies have shown 
that inactivation of SMAD4, KRAS and TP53 genes can 
promote cellular aerobic glycolysis and tumor invasive-
ness [77–80]. The number. High score of somatic muta-
tions presenting in the tumor genome indicated by TMB 
is associated with poor prognosis in PC patients [81], 
which is consistent with our study. In recent years, the 
discovery of anti-tumor targets has led to the develop-
ment of cancer therapy from traditional cytotoxic drugs 
to new specific anti-tumor drugs [82, 83]. Our pharma-
cosensitivity analysis showed that high-risk PC patients 
may be more sensitive to Entinostat, Linsitinib, Olaparib, 
Ribociclib, Ruxolitinib, Temozolomide, Venetoclax, Vin-
cristine, Vorinostat, and Zoledronate. Olaparib is widely 
used in patients with a germline BRCA mutation and 
metastatic pancreatic cancer [84, 85]. It is worth noting 
that Linsitinib, IGF-1R inhibitors is exploited for thera-
peutic benefit as effective adjuvant anticancer treatments 
for PC patients with deacetylated ENO2 [86].

The aim of this study was to investigate the possible 
association between DRLs and patient prognosis con-
structing a novel and innovative model. The resulting 
model was found to have good predictive forecasting 
potential through multi-perspective exploration and 
validation. However, despite the good performance of 
the model in both cohorts, it still has some limitations. 
Firstly, the data were obtained from a single database, 
and therefore, there may be data bias. Due to limited 
research on the three selected lncRNAs, we are unable to 
obtain comprehensive lncRNA annotations and clinical 
information from databases such as International Can-
cer Genome Consortium (ICGC). This limitation high-
lights the continued importance of lncRNA, which is still 
limited to some extent by current technology. Secondly, 

the model needs to be validated using prospective multi-
center studies with larger sample sizes, and complete fol-
low-up information are necessary to further validate and 
elucidate the mechanism of action of DRLs in PC.

Conclusions
This paper systematically analyzed the role of DRLs in 
pancreatic carcinoma prognosis and developed a prog-
nostic model using the relationship between TMB, TME 
and clinical features. In addition, the validity of DRLs 
markers as markers of possible treatment response was 
evaluated. Taken together, these findings reveal the clini-
cal importance of DRLs and provide a foundation for 
future research.
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