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Abstract
Background Cervical cancer (CC) stands as a major contributor to female mortality. The pathogenesis of CC is 
linked with various factors. Our research aimed to unravel the underlying mechanisms of ferroptosis and m6A RNA 
methylation in CC through bioinformatics analysis.

Methods Three CC datasets, including GSE9750, GSE63514, and TCGA-CESC, were incorporated. m6A-related genes 
were derived from published sources, while ferroptosis-related genes were obtained from the FerrDb database. 
Differential expression and correlation analyses were performed to identify differentially expressed m6A-related 
ferroptosis genes (DE-MRFGs) in CC. Subsequently, the biomarkers were further identified using machine learning 
techniques. Gene Set Enrichment Analysis (GSEA) and Kaplan–Meier (KM) survival analysis were also performed to 
comprehend these biomarkers. Furthermore, a competing endogenous RNAs (ceRNA) network involving biomarkers 
was established. Finally, biomarkers expression were verified by real-time quantitative polymerase chain reaction 
(RT-qPCR).

Results From the DE-MRFGs, six genes, including ALOX12, EZH2, CA9, CDCA3, CDC25A, HSPB1, were selected. A 
nomogram constructed based on these biomarkers exhibited potential clinical diagnostic value for CC, with good 
diagnostic accuracy confirmed through calibration curves. GSEA unveiled associations of these biomarkers with 
cell proliferation, spliceosome, and base excision repair. KM survival analysis demonstrated significant differences 
in survival outcomes between high and low expressions of HSPB1, EZH2, and CA9 samples. A ceRNA network was 
constructed involving three biomarkers, such as CDC25A, CDCA3, and EZH2, 29 miRNAs, and 25 lncRNAs. In RT-qPCR 
verification, the expression of ALOX12, EZH2 and CDC25A was significantly higher in CC samples, while HSPB1 
expression was higher in control samples.

Conclusion Six genes, namely ALOX12, EZH2, CA9, CDCA3, CDC25A, and HSPB1, were identified as m6A-regulated 
ferroptosis biomarkers in CC. These findings offer valuable insights into disease pathogenesis and hold promise for 
advancing CC treatment and prognosis.
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Introduction
Cervical cancer (CC) ranks as the fourth leading cause 
of female mortality globally [1]. Despite the decrease in 
CC morbidity due to formalized screening programs and 
widely available vaccinations, the assessment of progno-
sis and improvements in survival rates for patients with 
CC remain challenging. Notably, the survival rates for CC 
have seen limited improvement since the 1970s, particu-
larly in low Human Development Index (HDI) countries, 
where the 5-year survival rate is < 20%, compared to high 
HDI countries with survival rates of 60–70% [2]. With 
the widespread application of bioinformatic analysis, 
numerous key genes related to CC prognosis have been 
identified, these genes have been explored from vari-
ous angles, offering valuable insights for CC treatment 
[3–4]. Given the complex pathology of CC, comprehen-
sive and in-depth research is still essential to enhance our 
understanding of its pathogenesis and molecular mecha-
nisms, providing crucial targets for clinical research and 
treatment.

N6-methyladenosine (m6A) is the most prevalent 
RNA modification in eukaryotic, playing a crucial role in 
post-transcription and various biological processes and 
disease pathogenesis [5]. Ferroptosis is an iron-depen-
dent cell death process characterized by lethal lipid per-
oxidation on the cell membrane [6]. In recent years, an 
inextricable connection between ferroptosis and m6A 
has emerged, affecting the occurrence and develop-
ment of many tumors. For example, m6A in fibroblast 
growth factor receptor 4 (FGFR4), considered a risk fac-
tor for multiple cancer types, can attenuate ferroptosis 
in recalcitrant breast cancer [7, 8]. Furthermore, meth-
yltransferase-like 3 (METTL3) can inhibit ferroptosis 
by modulating SLC7A11 m6A modification to promote 
lung adenocarcinoma tumor growth [8, 9]. However, no 
relevant studies have explored the mechanisms of m6A 
and ferroptosis in CC. Therefore, the present study aims 
to systematically analyze m6A-related ferroptosis genes 
(MRFGs) in CC and investigate the prognostic signifi-
cance of these genes.

In this study, six differentially expressed MRFGs (DE-
MRFGs) were identified and defined as biomarkers by 
analyzing CC data from the The Cancer Genome Atlas 
(TCGA) and The Gene Expression Omnibus (GEO) 
databases using bioinformatics and machine learning 
techniques. Subsequently, gene set enrichment analy-
sis (GSEA), immune infiltration analysis, and survival 
analysis were performed to explore the impact of these 
six biomarkers. Furthermore, a competing endogenous 
RNA (ceRNA) network associated with these biomark-
ers was constructed to predict molecular regulatory 
mechanisms related to m6A and ferroptosis. Finally, bio-
markers expression were verified by real-time quantita-
tive polymerase chain reaction (RT-qPCR). This study 

is expected to provide new insights into the underlying 
factors of m6A-associated ferroptosis in CC and to have 
implications for the diagnosis, treatment, and prognosis 
of patients with CC.

Materials and methods
Data source
Two CC datasets, GSE9750 and GSE63514, were 
retrieved from the GEO database ( h t t p  s : /  / w w w  . n  c b i  . n 
l  m . n i  h .  g o v / g e o /). TCGA-CESC was obtained from the 
UCSC Xena ( h t t p  s : /  / x e n  a b  r o w  s e r  . n e t  / d  a t a p a g e s /). The 
GSE9750 dataset encompasses microarray sequencing 
data from 33 CC samples and 24 normal cervical epi-
thelium samples generated using the GPL96 Affyme-
trix Human Genome U133A Array platform [10]. The 
GSE63514 dataset includes microarray sequencing data 
of 28 CC samples and 24 normal samples sequenced 
using the GPL570 Affymetrix Human Genome U133 Plus 
2.0 Array platform [11]. The GSE7803 dataset includes 
microarray sequencing data of 21 CC samples and 10 
normal samples sequenced using the GPL96 Affyme-
trix Human Genome HG-U133A Array platform [12]. 
The TCGA-CESC dataset comprises 309 CC samples, of 
which 296 samples, designated with “01A” to denote pri-
mary solid tumor samples without formalin immersion, 
were included in this study. Furthermore, a total of 23 
m6A RNA methylation-related genes were derived from 
a publication [13], and 274 ferroptosis-related genes were 
sourced from the FerrDb database ( h t t p  : / /  w w w .  z h  o u n  a n .  
o r g /  f e  r r d b / c u r r e n t /).

Identification of DE-MRFGs
To begin, the “limma” R package (version 3.52.4) [14] was 
employed to detect differentially expressed genes (DEGs) 
between CC and control samples using the expression 
data from the GSE9750 dataset. The cut-off criteria for 
selection included a p.adjust-value < 0.05 and|log2FC| 
> 1. Subsequently, the DEGs were visualized through a 
volcano map and heatmap using the “ggplot2” R pack-
age (version 3.3.6) [15] and the “pheatmap” R package 
(version 1.0.12) [16], respectively. Following this, m6A 
and ferroptosis-related genes were matched with the 
GSE9750 dataset. MRFGs were then determined between 
m6A and ferroptosis-related genes via Spearman cor-
relation analysis, conducted using the “psych” R pack-
age (version 2.2.9) [17]. The cut-off criteria involved a 
p-value < 0.05 and|cor| > 0.5. Finally, the DEGs were 
intersected with MRFGs using the “ggvenn” R package 
(version 0.1.9) [18] to yield DE-MRFGs.

Enrichment and somatic mutation analysis of DE-MRFGs
The common functions of DE-MRFGs were identified 
through Gene Ontology (GO) and the Kyoto Encyclope-
dia of Genes and Genomes (KEGG) analyses, executed 

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://xenabrowser.net/datapages/
http://www.zhounan.org/ferrdb/current/
http://www.zhounan.org/ferrdb/current/
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using the “clusterProfiler” R package (version 4.7.1.001) 
[19]. The outcomes of the GO and KEGG analyses were 
illustrated using a GOCircle plot and an enrichment 
map, generated with the “GOplot” R package (version 
1.0.2) [20] and the “enrichplot” R package (version 1.16.2) 
[21], respectively. Considering that somatic mutations 
can be passed on to descendant cells during cell division, 
potentially playing a pivotal role in tumor development, 
we utilized the “maftools” R package (version 2.12.0) [22] 
to extract information on somatic mutations within DE-
MRFGs from CC samples in the TCGA-CESC dataset 
(comprising 289 samples with somatic mutation data). 
The results were then visually presented.

Recognition and verification of m6A-related ferroptosis 
biomarkers
The identification of biomarkers from the DE-MRFGs 
involved the utilization of the least absolute shrinkage 
and selection operator (LASSO) regression and support 
vector machine recursive feature elimination (SVM-
RFE) algorithms based on the expression data from the 
GSE9750 dataset. These methods were implemented 
using the “glmnet” R package (version 4.1-6) [23] and 
“e1071” R package (version 1.7–12) [24], respectively. 
Common feature genes were derived from the intersec-
tion of these two algorithms using the “eulerr” R pack-
age (version 7.0.0) [25]. Subsequently, receiver operating 
characteristic (ROC) analysis was conducted to obtain 
the biomarkers, utilizing data from the GSE9750 and 
GSE63514 datasets. This analysis was performed using 
the “pROC” R package (version 1.18.0) [26]. Moreover, 
Kaplan–Meier (KM) survival analyses were employed to 
explore the association between these biomarkers and 
the survival status of CC samples in the TCGA-CESC 
dataset (comprising 283 samples with survival data). The 
“survminer” R package (version 0.4.9) [27] was employed 
for this purpose. CC samples were categorized into high-
expression and low-expression groups based on the 
optimal threshold of biomarker expression. KM survival 
curves and log-rank tests were used to assess differences 
in survival status between these groups. In addition, the 
expression levels of the biomarkers in CC and control 
samples were evaluated in the GSE9750 and GSE63514 
datasets using the Wilcoxon test. Finally, based on the 
GSE7803 dataset, we performed ROC analysis and 
expression validation of the biomarkers.

Construction and verification of nomogram
To assess the utility of the biomarkers, a nomogram 
was created by incorporating the selected biomarkers. 
Scores based on the expression of each biomarker in the 
GSE9750 dataset were generated using the “rms” R pack-
age (version 6.3-0) [28]. The nomogram, integrated with 

the biomarkers, was established and subsequently vali-
dated through calibration curves.

Gene set enrichment analysis (GSEA) of biomarkers
GSEA was performed to investigate the functional asso-
ciations of the biomarkers using the GSE9750 dataset. 
The correlation between the biomarkers and all the genes 
in the GSE9750 dataset was assessed using the Spear-
man correlation analysis through the “psych” R package. 
The GSEA employed the “clusterProfiler” R package and 
GSEA gene sets obtained from the GSEA website ( h t t p  : / 
/  w w w .  g s  e a -  C C i  g d b .  o r  g / g s e a / C C i g d b). The p-values were 
sorted in ascending order, and the top 5 pathways were 
visualized in the enrichment map.

Correlation analysis of immune infiltration and biomarkers
Given the reported associations among m6A, ferroptosis, 
and immune responses, single-sample GSEA (ssGSEA) 
was employed to identify differences in immune cells 
between CC and control samples, using expression data 
from GSE9750. Immune cell scores for each sample were 
computed using the “GSVA” R package (version 1.44.5) 
[29], and the distribution of immune cell scores was 
visualized in a heatmap generated with the “pheatmap” 
R package. Significantly different immune cell scores 
(SDICS) between CC and control samples were identi-
fied using the Wilcoxon test. The correlation between 
biomarkers and SDICS was assessed using the Spearman 
correlation analysis, and the results were visualized using 
the “ggcor” R package (version 0.9.8.1) [30].

Correlation between biomarkers and oncogenic pathways
To delve deeper into the connection between biomark-
ers and oncogenic pathways, 13 cancer-related signatures 
(CRS) were acquired from a relevant publication [31]. 
CRS scores for each sample within the GSE9750 data-
set were computed using the ssGSEA algorithm in the 
“GSVA” R package. The correlation between biomarkers 
and CRS was explored using the Spearman correlation 
analysis, and the results were visualized using the “ggcor” 
R package. Subsequently, the Kruskal test was used to 
identify differentially expressed biomarkers across vari-
ous clinicopathological characteristics, including patho-
logical M, N, and T stages, Stage, and Grade.

Competing endogenous RNAs (ceRNA) network of 
biomarkers
To investigate the potential ceRNAs interacting with 
the biomarkers, a ceRNA network was constructed. Ini-
tially, starBase and miRTarBase databases were employed 
to predict the miRNAs associated with the biomark-
ers. Common miRNAs identified from both databases 
were used to predict the interacting lncRNAs separately 
in miRNet and starBase databases, respectively. The 

http://www.gsea-CCigdb.org/gsea/CCigdb
http://www.gsea-CCigdb.org/gsea/CCigdb
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common lncRNAs were obtained from the intersection 
of lncRNAs from the miRNet and starBase databases. 
The cut-off criteria were clipExpNum > 10 in starBase and 
a total number of experimental data > 1 in miRTarBase. 
All lncRNAs predicted by miRNet were included. The 
common lncRNAs, in combination with the common 
miRNAs, were used to establish the ceRNA network.

Real-time quantitative polymerase chain reaction 
(RT-qPCR)
We collected 10 cervical tissue samples from the Second 
Affiliated Hospital of Guizhou University of Traditional 
Chinese Medicine, including 5 CC tissue samples and 5 
control samples, for subsequent RT-qPCR experiments. 
The Ethics Committee at Guizhou University of Chinese 
Medicine gave its approval for this study (Approval num-
ber: LW20231123). In detail, total RNA was extracted 
from the tissue samples using TRIzol reagent according 

to the manufacturer’s instructions, followed by reverse 
transcription to obtain cDNA using the SweScript First 
Strand cDNA synthesis kit. Subsequently, 40 cycles of the 
reaction were performed on a CFX96 real-time quanti-
tative fluorescence PCR instrument under the following 
conditions: 95 ℃ for 1 min, 95 ℃ for 20 s, 55 ℃ for 20 s, 
and 72 ℃ for 30s. The relative expression of each bio-
marker was calculated by quantitative analysis method 
using 2-ΔΔCt, and GAPDH was used as an internal refer-
ence gene. The primer sequences were listed in Table 1.

Statistical analysis
All analyses were conducted using the R programming 
language. Unless otherwise specified, a p-value < 0.05 was 
considered statistically significant.

Results
Identification of DE-MRFGs in CC
A total of 1496 DEGs were identified between CC and 
control samples in the GSE9750 dataset, including 431 
upregulated genes and 1065 downregulated genes (Sup-
plementary Table 1, Fig. 1A). Figure 1B shows the expres-
sion of the top 40 DEGs in a heatmap. Subsequently, 18 
m6A-related genes and 241 ferroptosis-related genes 
were matched within the GSE9750 dataset. Among these, 
111 MRFGs were identified through the Spearman cor-
relation analysis (Supplementary Table 2, Supplementary 
Fig.  1). As shown in Figs.  1C and 16 DE-MRFGs were 

Table 1 The primer sequences of ALOX12, EZH2, CDCA3, 
CDC25A, HSPB1 and GAPDH
Gene Forward Primer Reverse Primer
ALOX12 TCTGGAGATGGCCCTCAAAC GAAGCTCTTCCATCCCCGAG
EZH2 AGGACGGCTCCTCTAACCAT AAGGGCACGAACTGTCACAA
CDCA3 CTGTCCCTCCCTTGGTTTGG CTGATCCAGCCCACTTGTGT
CDC25A GGTAAGAGGTGTAGGTCGGC TGTCTTCGCTGTTCTCCCAC
HSPB1 GGAGTGGTCGCAGTGGTTAG GGGAGATGTAGCCATGCTCG
GAPDH CGAAGGTGGAGTCAACGGATTT ATGGGTGGAATCATATTGGAAC

Fig. 1 Identification of differentially expressed N6-methyladenosine (m6A)-related ferroptosis genes (DE-MRFGs) in cervical cancer (CC). (A) The volcano 
maps and (B) heatmap of differentially expressed genes (DEGs) between CC and control samples in the GSE9750 dataset. The orange equilateral triangle 
(red cell) and green inverted triangle (purple cell) represent upregulated and downregulated DEGs, respectively. (C) The Venn map of DE-MRFGs shared 
by DEGs and ferroptosis genes
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observed, exhibiting differential expression in CC and 
control samples in the GSE9750 dataset.

Functional enrichment and somatic mutation analyses of 
DE-MRFGs in CC
To elucidate the molecular mechanisms involving DE-
MRFGs, GO and KEGG analyses were conducted. Fig-
ure  2A displays the top seven GO items, while Fig.  2B 
presents the top five KEGG pathway-enriched genes. 
Notably, DE-MRFGs were enriched in metabolism-
related pathways, including linoleic acid metabolic 
process and arachidonic acid metabolism. Somatic muta-
tion analysis was performed to explore the mutation 
status of DE-MRFGs in patients with CC. DE-MRFG 
mutations were detected in 19 out of 289 CC samples 
from the TCGA-CESC dataset. Most mutations were 
of the missense type. Among DE-MRFGs, EZH2 and 
DUOX1 mutations were observed in four CC samples, 

representing the highest number of samples affected 
(Fig. 2C).

Identification of biomarkers in CC
To identify biomarkers from the pool of DE-MRFGs, 
machine learning techniques were performed. Lasso 
regression selected 11 genes out of the 16 DE-MRFGs, 
including ALOX12, MUC1, EZH2, GDF15, CA9, DUOX1, 
KLF2, CDCA3, CDC25A, HSPB1, and CIRBP. SVM-RFE 
selected 13 genes from the 16 DE-MRFGs, including 
HSPB1, EZH2, CIRBP, CA9, CDC25A, CDCA3, RRM2, 
ALOX12, GDF15, KLF2, MUC1, ALOX12B, and KIF20A. 
A set of 10 common genes were identified through both 
algorithms, namely ALOX12, MUC1, EZH2, GDF15, 
CA9, KLF2, CDCA3, CDC25A, HSPB1, and CIRBP. 
To assess the diagnostic ability and generalizability of 
these 10 common genes, ROC analyses were conducted 
using the GSE9750 and GSE63514 datasets (Fig. 3A–B). 

Fig. 2 Functional enrichment and somatic mutation analyses of DE-MRFGs in CC. String diagram for Gene Ontology (GO) (A) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) (B) Enrichment analyses of DE-MRFGs. The outer circle is the pathway ID, the middle circle is the gene enriched in the 
term, and the inner circle is the z-score (which predicts whether the pathway is activated or suppressed). (C) Mutation waterfall of DE-MRFGs. The box 
plot in the top shows the tumor mutational burden (TMB) score of each sample and the waterfall shows the mutation of each gene (row) in each sample 
(column). Different colors represent different mutation types, and the bar chart on the right shows the proportion of samples with different mutation 
types in the gene
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Ultimately, six genes, including ALOX12, EZH2, CA9, 
CDCA3, CDC25A, and HSPB1, were recognized as bio-
markers, exhibiting area under the curve (AUC) val-
ues > 0.8 in both GSE9750 and GSE63514 datasets. For 

the evaluation of the biomarkers’ potential impact on 
survival and prognosis, KM survival curves were gen-
erated (Fig.  3C–H). CC samples with available survival 
information were categorized into high-expression and 

Fig. 3 Identification of biomarkers in CC. Receiver Operating Characteristic (ROC) curves for 10 intersection genes in predicting the immunotherapy 
response in the GSE9750 (A) and GSE63514 (B) datasets. AUC: area under curve. Kaplan–Meier curves for the overall survival (OS) of patients in the high-
expression and low-expression groups with biomarkers ALOX12 (C), EZH2 (D), CA9 (E), CA9 (F), CDC25A (G), and HSPB1 (H) in the TCGA-CESC database. 
Expression of six feature genes in the CC and control samples in the GSE9750 (I) and GSE63514 (J) datasets
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low-expression groups based on the optimal threshold 
(minprop = 0.3) for the expression of the biomarkers. 
Notably, the survival status of HSPB1, EZH2, and CA9 
showed significant differences among these groups. Fur-
thermore, the six biomarkers consistently demonstrated 
significantly differential expression in the training and 
testing datasets (Fig. 3I–J). In addition, the ROC results 
from the external validation dataset GSE7803 showed 
that the AUC values of these six biomarkers were greater 
than 0.7. The expression levels between the normal group 
and the CC group were consistent with those in the train-
ing and testing datasets, indicating that our findings have 
certain universality and generalizability (Supplementary 
Fig. 8).

Construction of a CC nomogram
A nomogram was established using the six biomarkers 
(Fig. 4A). A higher total score on the nomogram corre-
sponds to an increased likelihood of a CC diagnosis. The 
regression formula for the nomogram was computed as 
follows: y = 210.2324 + (− 0.3699) * ALOX12 + (10.8376) * 
EZH2 + (4.5802) * CA9 + (1.0213) * CDCA3 + (6.8987) * 
CDC25A + (− 25.9203) * HSPB1. Calibration curves con-
firmed the robust diagnostic accuracy of the nomogram 
(Fig. 4B).

Enrichment analysis of biomarkers
To gain insights into the molecular mechanisms of the 
biomarkers, GSEA was conducted using KEGG gene 
sets, as shown in Fig. 5. ALOX12 demonstrated connec-
tions with “ribosome”, “spliceosome”, “DNA replication”, 
“cell cycle”, and “neuroactive ligand–receptor interaction” 
(Fig.  5A). EZH2 was linked to “ribosome”, “cell cycle”, 
“DNA replication”, “spliceosome”, and “base excision 
repair” (Fig.  5B). CA9 exhibited correlations with “cell 

cycle”, “DNA replication”, “spliceosome”, “arachidonic 
acid metabolism”, and “small cell lung cancer” (Fig. 5C). 
CDCA3 was associated with “spliceosome”, “cell cycle”, 
“DNA replication”, “neuroactive ligand–receptor inter-
action”, and “ribosome” (Fig. 5D). CDC25A showed con-
nections to “cell cycle”, “DNA replication”, “spliceosome”, 
“base excision repair”, and “homologous recombination” 
(Fig. 5E). HSPB1 was related to “ribosome”, “DNA repli-
cation”, “neuroactive ligand–receptor interaction”, “oxida-
tive phosphorylation”, and “endocytosis” (Fig. 5F).

Immune infiltration in CC
To explore immune cell infiltration, immune scores 
were calculated for each sample in the GSE9750 dataset 
using ssGSEA. As shown in Fig. 6A, the ssGSEA scores 
for 28 immune cells in the CC and control groups were 
presented in a heatmap. Notably, significant differences 
in ssGSEA scores were observed for 21 immune cells 
between the CC and control groups (Fig. 6B). Subsequent 
correlation analysis between immune cells and biomark-
ers revealed a robust relationship (Fig. 6C), with ALOX12 
demonstrating a positive association with neutrophils 
and CDC25A displaying a negative correlation with 
eosinophils.

Oncogenic and clinical analysis of biomarkers
A total of 13 CRS were identified to explore the cor-
relation between biomarkers and oncogenic pathways. 
CDCA3 exhibited the highest positive correlation with 
“cell cycle”, while ALOX12 displayed the highest negative 
correlation with “cell cycle” (Fig.  7A). Furthermore, dif-
ferential expressions of the biomarkers were observed in 
various clinicopathological characteristics. For instance, 
ALOX12 exhibited significantly different expression 
across different Stages (Fig. 7B). CDC25A demonstrated 

Fig. 4 Construction and evaluation of a nomogram for CC. (A) Feature genes nomogram. The scores corresponding to each gene are added together 
to generate a total point. (B) Calibration curves of the nomogram. The horizontal and vertical coordinates represent the predicted probability and actual 
probability, respectively. The 45-degree line represents the ideal prediction
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varying expression in different pathological N stages 
(Fig.  7C), and HSPB1 displayed a distinct expression in 
different Grades (Fig. 7D). The expression of the remain-
ing biomarkers did not show significant differences 
across various clinicopathological characteristics (Sup-
plementary Figs. 2–7).

CeRNA network of biomarkers
To investigate the ceRNA network of biomarkers, we 
employed predicted databases for miRNAs (starBase 
and miRTarBase) and lncRNAs (miRNet and starBase). 
A total of 29 miRNAs were predicted as the interacting 
miRNAs for the three biomarkers using starBase (Supple-
mentary Table 3) and miRTarBase (Supplementary Table 
4) databases (Fig.  8A, Supplementary Table 5). In addi-
tion, 25 lncRNAs (Supplementary Table 6) were iden-
tified as the interacting lncRNAs for 28 miRNAs in the 
miRNet (Supplementary Table 7) and starBase databases 
(Supplementary Table 8, Fig. 8B). The ceRNA network is 
depicted in Fig. 8C. For instance, CDCA3 was regulated 

by hsa-miR-3179, hsa-miR-188-5p, and hsa-miR-1197. 
Furthermore, hsa-miR-3179 was regulated by lncRNAs 
NEAT1 and MALAT1. CDC25A was regulated by hsa-
miR-424-5p, which, in turn, was regulated by lncRNAs 
STAG3L5P-PVRIG2P-PILRB, FGD5-AS1, SNHG16, 
SNHG1, NEAT1, XIST, MCM3AP-AS1, and MIR497HG.

Validation of biomarkers through RT-qPCR
The RT-qPCR results showed that the expression levels of 
ALOX12, EZH2, and CDC25A were significantly elevated 
in the CC group, while the expression of HSPB1 showed 
the opposite trend (P < 0.05) (Fig.  9A and D). We could 
observe that CDCA3 expression was not significantly dif-
ferent between the two groups (Fig. 9E), probably due to 
the small sample size or sample heterogeneity.

Discussion
Recent studies have demonstrated that m6A and ferrop-
tosis can exert crucial influence over the specific biologi-
cal processes in CC. METTL14 can reduce FTH1 mRNA 

Fig. 5 Gene Set Enrichment Analysis (GSEA) of biomarkers. (A) ALOX12. (B) EZH2. (C) CA9. (D) CDCA3. (E) CDC25A. (F) HSPB1. The horizontal axis represents 
the ranked gene according to the correlation coefficient with feature gene, and the vertical axis is the running enrichment score
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Fig. 6 Immune infiltration in CC. (A) The heat maps of the scores of 28 immune cells in the GSE9750 dataset. (B) The box plots comparing immune cell 
scores between the control and CC samples. (C) Correlation matrix of biomarkers and immune cells. Shading color and asterisks represent the value of 
corresponding correlation coefficients. ns, not significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001
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stability through m6A methylation, thereby enhanc-
ing sorafenib-induced ferroptosis, which contributes to 
suppressing CC progression via the PI3K/Akt signaling 
pathway [32]. Yangmei Gong et al. demonstrated that 
miR-30c-5p repressed the growth and metastasis of CC 
xenografts through the inhibition of the METTL3/KRAS 
axis [33]. COTE-1 is a METTL3-mediated m6A modi-
fication target whose expression is dependent on the 
m6A reader. METTL3 promotes the proliferation and 
metastasis of CC cells and affects autophagy dependent 
iron death by regulating the expression of COTE-1 [34]. 
So we hypothesized that m6A might influence specific 
biological processes within CC tumors by affecting the 
RNA associated with ferroptosis. In the present study, 
we identified six biomarkers, including ALOX12, EZH2, 
CA9, CDCA3, CDC25A, and HSPB1. The construction of 
a nomogram revealed the strong predictive capabilities 
of these six biomarkers for CC, and their expression was 
validated in an external validation dataset and in samples 
we collected. Functional enrichment analysis using GO 

and KEGG indicated that these biomarkers were pre-
dominantly associated with oxidative stress and the cell 
cycle, among other factors. Furthermore, we observed 
associations among EZH2, CA9, and HSPB1 with over-
all survival (OS) in CC, as well as relationships among 
ALOX12, CDC25A, and HSPB1 with clinical progression 
in CC. Other bioinformatics studies have also identified 
connections among EZH2, CA9, and HSPB1 with OS or 
clinical stages in CC, aligning with our findings [35–36].

In this study, the expression of EZH2 in CC was sig-
nificantly higher than in normal samples. EZH2 protein, 
a core subunit of Polycomb repressive complex 2, has 
been identified as being crucial for epigenetic modifica-
tions. Its histone methyltransferase activity leads to the 
methylation of target genes, influencing gene expres-
sion and impacting the survival status of various can-
cers [37]. Study had demonstrated that overexpression of 
EZH2 was observed in CC tissues and cervical intraepi-
thelial lesions (CIN) tissues compared with paracancer 
normal tissues, and was closely correlated with tumor 

Fig. 7 Oncogenic and clinical correlation analyses of biomarkers. (A) Heat map of the correlation between biomarkers and oncogenic pathways. The 
yellow indicates positive correlation and blue indicates negative correlation. Shading color and asterisks represent the value of corresponding correlation 
coefficients. ns, not significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001. (B) Expression of the ALOX12 biomarker in Tumor stage. (C) Expression 
of the CDC25A biomarker in Pathological N stage. (D) Expression of the HSPB1 biomarker in Grade
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grade, histological differentiation, lymphatic metastasis, 
and overall survival. The strong upregulation of EZH2 
showed strong diagnostic power in distinguishing CC 
and CIN tissues from normal tissues [38]. Thus, it is 
plausible that EZH2 might similarly drive CC progres-
sion through mechanisms involving m6A and ferropto-
sis. Furthermore, the high expression of EZH2 combined 
with the inactivation of p53/p21 induces the cell to enter 
mitosis during the S phase. This dysregulation of the cell 
cycle may accelerate cancer cell death while enhancing 
chemotherapy efficacy, the role of EZH2 in cell cycle reg-
ulation, and its synergistic effect with WEE1 make this 
combination therapy strategy with great clinical potential 
[39].

CA9, also known as CAIX, plays a pivotal role in the 
regulation of acid-base balance and the transport of 
carbon dioxide and bicarbonate, ultimately influencing 

intracellular pH and extracellular pH balance. It is par-
ticularly significant in the context of anoxic and acidic 
TMEs. As a prominent hypoxia-inducing marker, CA9 
is known to be overexpressed in the majority of hypoxic 
solid tumor cells, contributing to tumor metastasis and 
poor prognoses [40]. This aligns with the findings of our 
study. A study by Jakubicková L et al. demonstrated that 
methylation of a specific CpG site at the − 74 position of 
the transcription start site leads to reduced CA9 expres-
sion in high-density cultured CC HeLa cells [41]. Serum 
CA9 level plays an important role in the prognosis assess-
ment of patients with metastatic clear cell renal cell car-
cinoma (RCC) [42]. CA9 is associated with longer overall 
survival in acute myeloid leukemia (AML), and its high 
expression induces a strong immune response that helps 
control minimal residual disease (MRD). Therefore, CA9, 
as an immunotherapy target, may play an important role 

Fig. 8 The competing endogenous RNA (ceRNA) network of biomarkers. (A) Venn map of microRNA (miRNA) targeting common biomarkers to the 
starBase and miRTarBase databases. (B) Venn map of long noncoding RNAs (lncRNA) targeting common miRNAs to the miRNet and starBase databases. 
(C) The ceRNA network. The red triangle is mRNA, the green circle is miRNA, and the blue rectangle is lncRNA
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in the clinical treatment of AML, especially in multiva-
lent immunotherapy [43].

In this study, HSPB1 expression in CC tumors was 
lower than in normal samples, suggesting its protective 
function. HSPB1, also known as HSP27, belongs to the 
family of stress-inducible proteins, commonly referred 
to as heat shock proteins. It plays a crucial role in main-
taining cellular homeostasis in normal cells. How-
ever, Alvarez-Olmedo DG et al. discovered that HSPB1 
could protect CC cells from oxidative and toxic damage 
induced by cadmium [44]. HSPB1 overexpression can 
inhibit ferroptosis in CC cells induced by erastin [45]. 
These findings seemingly contrast the conclusions we 

reached, necessitating further investigation. The pro-
moter − 1271G > C variant of the HSPB1 gene is closely 
associated with lung cancer susceptibility and survival. 
Patients with the − 1271  C allele have an increased risk 
of lung cancer, but offer better survival in patients with 
advanced non-small cell lung cancer (NSCLC). This 
variant was also associated with levels of DNA dam-
age and reduced expression of Hsp27. In conclusion, 
the − 1271G > C variant may affect the susceptibility and 
prognosis of lung cancer by regulating the level of Hsp27 
synthesis, which has important clinical value [46].

CDC25A is among the most critical regulators of the 
cell cycle. Qi J et al. indicated that histone demethylation 

Fig. 9 Validation of biomarkers through RT-qPCR. (A) Relative ALOX12 level(to GAPDH). (B) Relative EZH2 level(to GAPDH). (C) Relative CDC25A level(to 
GAPDH). (D) Relative HSPB1 level(to GAPDH). (E) Relative CDCA3 level(to GAPDH). The group of CC refers to the tumor samples, the group of control refers 
to peritumoral tumor samples. ns, not significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 0.0001
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of CDC25A can result in DNA instability and promote 
CC progression [47]. In addition, CDC25A has been 
found to suppress autophagy-mediated ferroptosis in 
CC [48]. In this study, higher CDC25A expression was 
observed in CC compared to healthy individuals, so it 
is plausible that CDC25A is involved in CC progres-
sion through the mechanism of m6A and ferroptosis. 
CDC25A may have important clinical value in epithe-
lial tumors because LIN28A regulates its expression by 
inhibiting let-7 miRNA biogenesis. The upregulation 
of CDC25A is able to promote cell cycle progression in 
cancer cells, and therefore, as a cell cycle regulator, it 
could be a potential target in cancer therapy, especially in 
tumor types where LIN28A is reactivated [49].

ALOX12 is a member of the lipoxygenase family, 
responsible for oxidizing unsaturated fatty acids to pro-
duce lipid peroxides and bioactive lipids. This function 
allows it to play a role in regulating cell proliferation, 
apoptosis, differentiation, and senescence [50]. In this 
study, decreased ALOX12 expression was observed in 
CC tumor tissues, suggesting its protective role. A study 
showed that down-regulation of ALOX12 can inhibit 
ferroptosis induced by cancer suppressor pathway p53 
and accelerate tumor formation [51]. However, stud-
ies in other cancers have reported different outcomes. 
For instance, reduced ALOX12 expression can increase 
sensitivity to chemotherapy in breast cancer and inhibit 
the EMT, suppressing progression in lung cancer [52]. 
Genetic variations in the ALOX12 gene were strongly 
associated with adenoma recurrence, especially in the 
patient population taking placebo. Its variation may be 
associated with adenoma recurrence and cardiovascular 
toxicity caused by celecoxib therapy [53]. Further stud-
ies found that abnormal methylation of the ALOX12 
gene was associated with megakaryocyte dysplasia in 
acute myeloid leukemia (AML) (P = 0.0003) and poorer 
prognosis (overall survival and disease-free survival, 
P = 0.000411). Therefore, this gene has clinical application 
value in predicting the prognosis of patients and guiding 
individualized treatment [54]. However, clinical studies 
on ALOX12 in CC have not yet been reported, so further 
clinical studies are needed to explore the potential role of 
ALOX12 in the occurrence, development and treatment 
response of cervical cancer.

CDCA3 is a gene associated with cell cycle progres-
sion, and our results showed an up-regulated expression 
of CDCA3 in CC. In gastric cancer, the CDCA3 protein 
can promote the transition of the cell cycle from the 
G0/G1 phase to the S phase, thereby stimulating tumor 
proliferation [55]. However, Katrina Kildey et al. found 
that CDCA3 can enhance the therapeutic efficacy of 
platinum-based chemotherapy [56]. So far, there isn’t 
any experiment demonstrated that CDCA3 is associated 

with m6A or ferroptosis in CC, so it is worthy of further 
investigation.

In this study, ALOX12 was found to have associa-
tions with various immune cell infiltrations, with the 
highest positive correlation observed with neutrophils. 
Although not previously reported in CC, Siyuan Weng 
et al. identified that high ALOX12 expression predicted 
increased immune infiltration and improved immuno-
therapy response in colon cancer [57]. Consequently, 
further research in CC regarding the potential immuno-
modulatory role of ALOX12 is warranted. In addition, 
we found that CDC25A was linked to multiple immune 
cell infiltrations and had the strongest negative correla-
tion with eosinophils. Two other bioinformatic analyses 
have demonstrated the influence of CDC25A on immune 
cell infiltration and tumor development in lung adeno-
carcinoma and liver hepatocellular carcinoma [58–59]. 
Hence, it is essential to conduct further investigations 
to understand how CDC25A impacts immune cell infil-
tration in CC and its consequent effects on CC progres-
sion. Moreover, we observed that four other biomarkers 
were associated with various immune cell infiltrations, 
including “activated CD4 T cell”, “effector memory CD4 
T cell”, and “eosinophil”. A study showed that EZH2 plays 
a central role in regulating T-cell immune responses and 
regenerating chimeric antigen receptor T cells, and it can 
remodel the TME in several solid tumors [60]. CA9 acts 
as an immunoadjuvant, stimulating adaptive immune 
responses against tumor antigens. In pancreatic cancer, 
CA9-mediated acidic TME suppresses immune infiltra-
tion of CD8 + T cells [61]. HSPB1 can modulate immune 
escape in ovarian cancer, and inhibiting HSPB1 inhibition 
can enhance killing and memory responses mediated by 
CD8 + T cells in breast cancer [62–63]. A study indicated 
that CDCA3 can serve as a prognostic biomarker in cuta-
neous melanoma and is associated with immune infiltra-
tion [64]. Moreover, in renal cell carcinoma, CDCA3 can 
predict a poor prognosis and impact CD8 + T cell infiltra-
tion [65]. In summary, these biomarkers play significant 
roles in tumor occurrence and development by positively 
or negatively affecting immune cell infiltration, thereby 
influencing the TME. This suggests that further investi-
gations into these biomarkers in CC are warranted.

Lastly, we predicted miRNAs and lncRNAs associ-
ated with the six biomarkers and constructed a ceRNA 
network to identify potential regulatory interactions. 
The ceRNA network consisted of three biomarkers 
(CDC25A, CDCA3, and EZH2), 29 miRNAs, and 25 
lncRNAs. According to a previous study, several miR-
NAs and their related lncRNAs can regulate these three 
biomarkers and influence the progression of various can-
cers. For instance, LINC01535 can suppress miR-214 
expression, resulting in increased EZH2 expression and 
contributing to the poor prognosis of CC [66]. Wei J et 
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al. demonstrated that LINC00662 facilitates the progres-
sion of CC and the development of radiotherapy resis-
tance through the absorption of microRNA-497-5p, 
which consequently results in the indirect up-regulation 
of CDC25A expression [67]. The lncRNA ST8SIA6-AS1 
inhibits the p53/p21 pathway through the targeted inhi-
bition of miR-145-5p/CDCA3, consequently promoting 
the proliferation and metastasis of breast cancer cells 
[68]. In this study, we identified several miRNAs and 
their associated lncRNAs for the three biomarkers that 
have not been previously reported in published studies. 
These findings represent potential novel mechanisms 
underlying CC that merit further investigation.

In conclusion, we initially identified six ferroptosis-
associated m6A biomarkers in CC using various bioinfor-
matic analyses. Biomarkers can help detect diseases that 
are not obvious or difficult to diagnose, assess a patient’s 
risk of disease, and take early intervention measures [69]. 
Meanwhile, these biomarkers offer potential diagnostic 
and therapeutic insights for CC and serve as a foundation 
for further molecular research. Functional, immune infil-
tration, and ceRNA analyses suggest the involvement of 
these biomarkers in CC development. However, clinical 
application of these findings necessitates additional data 
from larger sample sizes, and the specific mechanisms 
through which these biomarkers operate require further 
experimental validation. This study also lacks additional, 
larger, independent data sets for external validation to 
improve the reliability and generalisability of our study. 
Therefore, we plan to confirm and extend the findings 
with a larger clinical cohort through external valida-
tion or multi-center collaboration in future studies. Our 
ongoing efforts aim to elucidate the precise roles of these 
biomarkers in CC.
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