Li etal. Hereditas ~ (2025) 162:62 Hereditas
https://doi.org/10.1186/541065-025-00428-1

. ) . ) ®
Role of necroptosis and immune infiltration =
in essential thrombocytosis
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Abstract

Background Necroptosis, a recently identified form of programmed cell death involved in the pathogenesis of a
variety of tumor and non-tumor diseases. Nevertheless, the function of necroptosis in essential thrombocytosis (ET)
remains unclear, which is a classic myeloproliferative tumor.

Materials and methods The role of necroptosis in ET was determined via bioinformatics combined with gRT-PCR
analysis of clinical samples. GSE57793 and GSE26049 datasets were recruited to identify necroptosis differentially
expressed genes based on differential gene identification, necroptosis gene sets and data machine learning.
Enrichment analysis (GSEA) was used to evaluate the gene enrichment signaling pathway of ET, immune infiltration
analysis was used to explore the abundance of immune cell infiltration in ET, and the correlation between necroptosis
differential genes and immune cell infiltration was studied.

Results Five necroptosis genes were recognized to be remarkably enriched in the necroptosis pathway, including
CHMP18B, FTH1, HSP9OABT, ILTA, and RBCK1. The imbalance of invasion of Th1/Th17 cells was identified in ET, and
the differential necroptosis gene was positively correlated with the infiltration of multiple immune cells. There is
significant necroptosis in ET, which is enriched in the necrotizing apoptotic pathway, and is associated with immune
infiltration.

Conclusions Necroptosis might drive the progression of ET via stimulating immune infiltration and immune
responses. The findings bring new insights into the treatment mechanism and treatment strategy of ET in the future.

Keywords Essential thrombocythemia, Necroptosis, Immune infiltration, Multiple machine learning methods,
Differentially expressed genes

Background

Essential Thrombocythemia (ET), a chronic myelopro-
liferative disease, is characterized by an increased inci-
dence of thrombocytosis, thrombosis and cardiovascular
events [1]. The symptoms of ET are heterogeneous, and

fGuangming Li and Ying Guo should be considered joint first author.

YE::;ZSE %i?;;e‘ the lurking threat of secondary myelofibrosis and acute
yyz_96@163.com leukemia cannot be ignored. In the past few years, with
'Surgery Base Training, Shanghai Fengxian District Central Hospital, the discovery of mutated genes in JAK2 (in 60%), MPL
Shanghai 201499, China . . . .

Department of Hematology, Daging Qilfield General Hospital, Daging (in 3%) and CALR (in 20%), early dlagn051s of ET has
City, Heilongjiang Province 163001, China gradually become possible [2]. Existing pharmacothera-
*Internal Medicine Base Training, Shanghai Fengxian District Central peutic approaches for ET are incapable in attaining a
Hospital, No.6600, Nanfeng Highway, Nangiao Town, Fengxian District, cure or 1 . h ival d . E Iv. th
Shanghai 201499, China prolonging the survival duration. Fortunately, the

©The Author(s) 2025. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included
in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The
Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available
in this article, unless otherwise stated in a credit line to the data.


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s41065-025-00428-1&domain=pdf&date_stamp=2025-4-11

Li et al. Hereditas (2025) 162:62

prognosis for ET is comparatively favorable, as the esti-
mated median survival periods for younger patients are
33 years and 24 years, respectively [3]. However, a cer-
tain number of patients might experience severe symp-
toms, leading to a decline in their quality of life, which
is manifested by a continuous deterioration. This is pre-
cisely what accounts for the diminished survival rate [4].
In view of this situation, ET patients require more effec-
tive and accurate diagnostic methods and even therapeu-
tic targets.

In the past decade, immune infiltration has been
emerged as a pivotal area of research, yielding a series
of remarkable breakthroughs in the research of diverse
diseases [5]. In the context of tumors, for instance, infil-
trating macrophages in tumors are divided into two dif-
ferent subpopulations, activated by different polarized
cytokines. M1 macrophages principally exert antitumor
functions through the mediation of antibody-dependent
cytotoxicity and the production of ROS and tumor necro-
sis factor. In contrast, M2 macrophages exhibit tumor-
promoting activity by promoting tumor angiogenesis,
immunosuppression, cancer cell invasion and metasta-
sis [6]. Alzheimer’s disease is the most common form of
progressive dementia in which infiltration of peripheral
natural killer cells (NK) is also observed [7]. However, it
is unknown whether the occurrence and development of
ET also involve the infiltration of immune cells.

Necroptosis represents a form of programmed inflam-
matory cell death. Initially, it was identified as alternative
mode to apoptosis upon binding to death domain recep-
tors. Functionally, it can be regarded as a safeguard mech-
anism of the body against some pathogen invasions [8, 9].
It is characterized by a typical death receptor composed
of a threonine protein kinase 1,3 (RIPK1, RIPK3)-MLKL
mediated necroptosis pathway [8], which combines some
features of necrosis and apoptosis, including membrane
integrity disruption, organelle swelling, cytolysis, intra-
cellular component leakage, etc [10]. The relationship
between necroptosis and tumorigenesis and develop-
ment is intricate, as it exerts a dual role in tumor micro-
environment. At present, there is evidence indicating
that necroptosis can promote the invasion and metastasis
of breast tumors in mice, and eliminating MLKL to block
necroptosis can significantly reduce lung metastasis in
breast cancer lines [11]. However, the downregulation
of another key member, RIPK3, is associated with low
survival in acute myeloid leukemia, suggesting its antitu-
mor effects through facilitating RIPK3-MLKL-mediated
necroptosis and the differentiation of leukemia-initiating
cells [12]. Necroptosis has also been implicated in other
non-neoplastic diseases. For instance, following ischemic
stroke, silencing RIPK1 or RIPK3 can polarize microglia
and macrophages to the M2 phenotype, thereby exerting
anti-inflammatory effects. In pancreatitis, the death of
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acinar cells can be prevented by silencing RIPK1, thereby
reducing the severity of pancreatitis [13]. However, the
role of necroptosis in ET has not been studied.

In this research, a comprehensive bioinformatics anal-
ysis was systematically conducted by utilizing the Gene
Expression Omnibus (GEO) database. The aim was to
provide an overview of immune infiltration in ET and
explain if and how necroptosis contributes to ET devel-
opment. In addition, the underlying biological mecha-
nism of ET necroptosis was explored, and the association
between necroptosis and immune cell infiltration was
analyzed, so as to better understand the potential
immune infiltration process during ET development.
Finally, the expression of necroptosis genes in ET was
verified by qRT-PCR.

Methods

Date retrieval and processing for this study

The Gene Expression Omnibus (GEO) data numbers
GSE57793 and GSE26049 datasets were selected as data
sources for this study. GSE57793 contains 16 Essential
Thrombocythemia (ETs), which are divided into 8 ETs
before IFNalpha2 treatment and 8 ETs after treatment.
And 8 pre-treatment ETs were selected for research.
GSE26049 contains 19 ETs and 21 control subjects. The
2 databases include a total of 27 ETs and 21 control sub-
jects. 159 necroptosis were collected in the profiles of 159
genes related to necroptosis from the Kyoto Encyclope-
dia of Genes and Genomes (KEGG) Pathway databases (h
ttps://www.genome.jp/dbget-bin/www_bget?pathway+hs
a04217). R version 4.2.2.

Database consolidation and ET variance analysis

The data were removed from the batch effect using the R
packages “limma” and “sva’; and the data were combined
for a total of 48 samples and 21,640 genes. Differential
genes were screened using adjust P<0.05 and R pack-
age “limma” was used for differential analysis. Use the R
packages “FactoMineR” and “factoextra” to plot.

Gene set enrichment analysis (GSEA) of differential genes
Genes were GSEA using the R package “clusterpofiler’,
including the Gene Ontology (GO), Kyoto Encyclope-
dia of Genes and Genomes (KEGG), and the Reactome
database.

Gene interaction analysis

The difference analysis was performed on the intersection
of up-regulated and down-regulated genes and necrop-
tosis genes, respectively. Protein interactions between
intersecting genes were analyzed using the STRING data-
base (https://cn.string-db.org/) [14]and the genemania
database (http://genemania.org/) [15]. Machine learning
using data was used to identify marker genes, including
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lasso regression using R-package “glmnet” and random
forest machine learning using R-package “randomForest”.
LASSO is a regularization method that can effectively
perform feature selection by shrinking some coefficients
to zero, which helps in reducing the dimensionality of
the data and identifying the most relevant features. Ran-
dom Forest is an ensemble learning method that builds
multiple decision trees on different subsets of the data,
which is robust to overfitting and can provide informa-
tion about the importance of each feature. The R package
“circlize” is used to perform genetic correlation analysis
on necrotic apoptosis genes selected by machine learn-
ing. The R package “pROC” is used to construct ROC
curves that genetically predict the onset of disease.

Immune infiltration analysis

Based on machine learning, 5 core necroptosis genes
were identified, and the infiltration of multiple immune
cells was evaluated using the ssGSEA function of R-pack
“GSVA’. Pearson correlation coefficient was used to eval-
uate the correlation between marker genes and various
immune cells (only immune cells with P<0.05 are shown,
and R-pack ggplot2 is plotted).

Exploration of core gene regulatory mechanisms
Prediction of 5 genes upstream miRNA and TF based on
the Regnetwork database (https://regnetworkweb.org/)
[16] was visualized using Cytoscape software.

Patients and tissue samples

A total of 20 blood samples (including 10 ET and 10 con-
trol samples) were collected. Blood samples are stored at
4 °C for subsequent validation experiments. This study
received approval from the Ethics Committee, and writ-
ten informed consent was acquired from every subject.

Quantitative reverse Transcription-PCR (qRT-PCR)

Whole blood samples were treated with Trizol. Total
RNA was reverse transcribed by means of the Evo
M-MLV RT Mix Kit with gDNA Clean for qPCR
(AG11728, Accurate Biotechnology, Hunan, China, Co.,
Ltd). Subsequently, the SYBR Green Premix Pro Taq HS
qPCR Kit (AG11718, Accurate Biotechnology, Hunan,
China, Co., Ltd) was employed for qRT-PCR. The rela-
tive expression of the gene was analyzed by applying the
2722 method and was normalized against GAPDH.
Primer sequences are shown in Table S1.

Statistical analysis

Data analysis was carried out using SPSS 21.0 software,
while GraphPad 7.0 software was employed for figure
generation. The data were presented as mean and stan-
dard deviation (SD). Student’s t test was utilized to com-
pare the differences between the two groups. A difference

Page 3 of 12

was considered statistically significant when the P value
was below 0.05.

Results

Identify differential genes

Due to the differences in data sequencing batches and
sequencing platforms between the two datasets, we first
combined the data with a de-batch effect. The compari-
son results of data before (Fig. 1A) and after the combi-
nation (Fig. 1B) indicated that all experimental samples
could be fully included. After the two datasets were
combined, the 27 ETs and 21 control subjects included
were analyzed for genetic differences. The volcano map
(Fig. 1C) shows all the differential genes that meet the
screening conditions, and the heat map (Fig. 1D) summa-
rizes the distribution of the top 20 genes for differences
between groups for easy visualization.

Differential gene enrichment analysis

Enrichment analysis of differentially expressed up- and
down-regulated genes was performed using GO, and
KEGG database to identify major signaling pathways.
GO feature enrichment analysis includes Biological Pro-
cess (BP) (Figs. 2A), Cellular Component (CC) (Figs. 2B)
and Molecular Function (MF) (Figs. 2C). KEGG (Fig. 2D)
enrichment analysis showed that the differential genes
were mainly enriched in P13K-Akt, human tumor virus
infection, salmonella infection, human T-cell leukemia
virus 1 infection and human cytomegalovirus infection.

Links of necrotizing apoptotic genes to ET

According to the outcomes of the differential analysis, we
intend to further examine the role of necrotizing apop-
totic genes in ET. The gene intersection analysis of 159
necroptosis genes and differential analysis of up-regu-
lated and down-regulated genes showed that the expres-
sion of 13 apoptotic genes was upregulated (Fig. 3A) and
the expression of 29 apoptotic genes (Fig. 3B) was down-
regulated. Further GO (Fig. 3C) and KEGG enrichment
analysis of 42 genes. KEGG (Fig. 3D) found that most
of the genes were mainly enriched in necroptosis, influ-
enza A, NOD-like receptor signaling pathway, neuro-
degenerative pathway - multiple diseases and lipid and
atherosclerosis. The network diagram summarizes the
correspondence between top 5 signaling pathways and 42
necroptosis genes (Fig. 3E). The above studies show that
the onset and progress of ET may be related to necropto-
sis, which may be closely related to the invasion of mul-
tiple pathogens.

Construction of differential necrotizing apoptotic gene
protein interaction network

We further display volcano maps (Figs. 4A), heat maps
(Figs. 4B) and between-group difference maps of 42
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Fig. 1 Data processing and analysis of differences between groups. PCA plot before data consolidation (A) and PCA plot (B) after data merge. Differential

analysis volcano map (C) and differential analysis heat map (D)

differential necroptosis genes for easy visualization. The
STRING database and genemania database were used
to study the interaction network of differential necrotic
gene proteins, respectively. Multiple genes were found
to be at the hub of the network, including HSP90AA1,
EIF2AK2, CASP8, CASP8, CFLAR, FAS, HMGBI, TLR4,
etc. (Figs. 4C). Networks show that multiple genes are
closely linked in terms of physical interactions and shared
protein domains (Fig. 4D-E).

Identification of biomarkers in ET

To further narrow down the differential necrosis gene
range, we used data for machine learning to further nar-
row the gene range, including LASSO regression and
random forest machine learning. By using LASSO first
to pre-select a set of potentially important features,
Random Forest can then be applied to further rank
and validate these features, taking advantage of its abil-
ity to handle complex relationships in the data. Eleven
genes were screened by lasso regression (Fig. 5A) and 10
genes were screened by random forest machine learning
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(Fig. 5B). After that, 5 overlapping genes were identi-
fied as a research focus (Fig. 5C) and their interrelation-
ships were analyzed (Fig. 5D). Combined with qRT-PCR
results, the results showed that CHMP1B was strongly
correlated with HSP90AB1, CHMPI1B and IL1A, and
HSP90AB1 and IL1A (Fig. 5E-G). Finally, ROC curves
were constructed in the dataset to predict the occur-
rence of ET, and the results show that the minimum AUC
is 0.767 and the maximum is 0.977, indicating that five
differential necrosis genes may be used as biomarkers for
effective diagnosis of ET (Fig. 5H).

Biomarkers and immune cell infiltration
First, the correlation between immune cell infiltration
in ET. For example, among the 23 immune cells was

explored (Fig. 6A), activated B cells were significantly
positively correlated with activated CD4 T cells, activated
CD8 T cells, gamma delta T cells, immature B cells, reg-
ulatory T cells, T follicular helper cells, type 2 T helper
cells, and on the contrary were positively correlated with
activated dendritic cells, mast cell, type 17 T helper cell is
negatively correlated. Differences in immune cell infiltra-
tion were calculated using cybersport for 27 ETs and 21
control subjects (Fig. 6B), activated CD4 T cells, activated
CD8 T cells, monocyte, plasmacytoid dendritic cells, T
follicular helper cells, and Type 1 T helper cells in con-
trol. The expression of subjects was significantly higher
than that of ET, while the expression of CD56""¢" tural
killer cell, type 17 T helper cell was the opposite. Based
on the results of biomarkers and immune infiltration
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assays, we further analyzed the correlation of diagnos-
tic markers with immune infiltrating cells. The results
showed CHMP1B with plasmacytoid dendritic cell, type
1 T helper cell, RBCK1 and type 17 T helper cell, IL1A
and type 1 T helper cell, gamma delta T cell, HSP90AB1
with T follicular helper cell, monocyte, type 1 T helper
cell, FTH1, is significantly positively correlated with the
Mast cell (Fig. 6C-G). These studies demonstrated that
necroptosis and immune cell infiltration may be involved
in the development of ET, and the positive correlation
between the two suggested that necrosis may accelerate
the progression of ET through driving immune infiltra-
tion and immune response.

Single gene correlation analysis and functional enrichment
analysis

To examine the potential biological function of bio-
markers in ET, we performed a single-gene functional
enrichment analysis according to the Reactome database.
Firstly, the association between 5 necrotic genes and all

genes in 48 samples in the dataset was analyzed, and the
top 50 results were selected for visual display (Fig. 7A-E).
Then, according to the results of gene correlation analy-
sis, a single gene enrichment analysis was carried out and
the top 20 biological functional pathways were demon-
strated (Fig. 7F-]). The five genes are mainly involved in
mRNA processing, pathogen infection, the immune sys-
tem and other pathways.

Exploration of upstream regulatory mechanisms of
biomarkers

Regnetwork was used to explore the regulatory mecha-
nisms of miRNA and TF upstream of genes, visualized
using Cytoscape software. The results indicated that 5
genes were related to multiple TFs and miRNAs, and that
one TF could regulate multiple genes (Fig. 8).

Validation of biomarkers
Expression of 5 biomarkers in clinical samples was
detected using qRT-PCR. With the exception of
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HSP90ABI1 (Fig. 9C), the remaining four markers showed
significant upregulation (Fig. 9A, B, D, E), indicating the
reproducibility and reliability of the results. Figure 9F-G

summarizes sample clinical information.

Discussion

ET is a disease frequently encountered in clinical prac-
tice, it often occurs in older people [17]. Palpable sple-
leukocytosis,
thrombosis are common concurrent symptoms [18].
Additional associated symptoms include headache, dizzi-
ness, visual disturbances, dysaesthesia and, more rarely,
erythematous limb pain [1]. Low-dose aspirin is the cor-
nerstone of therapy used to reduce the risk of thrombo-
sis, but hydroxyurea or interferon is the most commonly
used cytoreductive option for ET patients at high risk of
vascular complications when treating patients at mod-
erate and high risk [19]. Neverthless, some patients still
experience rapid symptoms progression, and there is
even a 4% probability of leukemia transformation [1].

nomegaly,

abnormal karyotype

and

Consequently, there is an urgent need for more effective
and accurate diagnostic markers.
In this study, we confirmed the presence of necrop-

tosis in ET. To our knowledge, this is the first research
manuscript to report the presence of necroptosis in the
pathogenesis of ET in humans. First, we integrated two

GEO datasets to identify 42 differential Necroptosis
genes through genetic difference analysis and Necrop-
tosis gene sets. Enrichment analysis of these 42 genes
revealed their activation in Necroptosis, influenza A,
NOD-like receptor signaling pathways, neurodegen-
erative pathways-multiple diseases and lipids and ath-
erosclerosis. Further by applying data machine learning
to the data for biomarkers identification, we obtained 5
marker genes, including CHMP1B, FTH1, HSP90ABI,
IL1A and RCBK1. GSEA based on KEGG showed that
5 genes were mainly enriched in Necroptosis, NOD-like
receptor signaling pathway, and influenza A and measles
infection pathways. Reactome single gene enrichment
analysis mainly involved in mRNA processing, pathogen
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infection, immune system and other pathways. Currently,
Necroptosis is regarded as an alternate cell death defense
mechanism that is triggered when apoptosis is blocked,
such as during pathogen infection [20, 21]. This finding is
consistent with the necrotic pathway involved in the five
genes and the pathogen infection pathway, and is related
to the change of ET immune status.

Based on the above findings, we further exam-
ined the difference in immune cell infiltration enrich-
ment between ET and normal samples, and found that
CD56™8" tural killer cell and type 17 T helper cells
were significantly higher expressed in ET. Studies have
found that CD56""" tural killer cell exhibits abnormal
receptor expression and cytokine production, which is
seriously associated with aplastic anemia [22]. Type 17
T helper cell is a subtype of CD4 T cell differentiation,

and its differentiation is related to the differentiation of
iTreg, and TGEF-p is required for both subtypes of differ-
entiation [23]. Type 17 has been shown to participate in
the pathogenesis of multiple autoimmune diseases and
shows a strong dependence on cellular environmental
triggers [24].

This study represents the first instance of identifying an
imbalanced expression of Type 17 T helper cells, and it
is significantly positively correlated with the marker gene
RBCKI. Regarding another subtype of CD4 T cells, Type
1 T helper cells, were remarkably reduced in ET and pos-
itively correlated with CHMP1B, IL1A and HSP90AB1
expression. Additionally, Type 1 helper cells is known to
produce interferon-y, interleukin-2, and tumor necrosis
factor  and activates macrophages responsible for cell-
mediated immune and phagocyte-dependent protective
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responses [25]. This suggests that necrotizing apoptotic
cells caused by CHMP1B, IL1A, and HSP90AB1 may be
recognized by type 1 help cells, thereby activating cel-
lular immune processes in the body. Taken together,
these studies imply that necroptosis may accelerate the
progression of ET by driving immune infiltration and
immune response.

In addition, the expression of CHMP1B, FTHI,
HSP90AB1, IL1A and RCBK1 were validated in 20 clini-
cal samples, which was consistent with datasets-derived
findings. The validation groups included 10 cases of
NC group (5 males and 5 females) and 10 cases in ET
group (6 males/4 females, 39-79 years). The GEO data-
set (GSE57793) had population characteristics, which
include 9 males and 10 females in ET group (35-87
years), 21 males and 20 females in PV group (35-85
years), 3 males and 6 females in PMF groups (53-74
years). The present validation group has representative-
ness of samples with GEO datasets. Moreover, except for
HSP90AB1, the remaining four markers showed signifi-
cant upregulation, indicating the reproducibility and reli-
ability of the results.

However, this study is subject to certain limitations.
First, although diagnostic markers have been rigorously
analyzed via rigorous bioinformatics analysis and qRT-
PCR validation, the absence of protein-level experiments

leaves the results unsubstantiated. Second, the small
sample size within the datasets necessitates confirma-
tion through larger and more prospective studies. Third,
while our analysis has established a correlation between
necroptosis and immune cell infiltration in ET, the spe-
cific mechanistic relationship between the two remains
unproven, thus warranting further investigation.

Conclusions

Via genetic difference analysis, with the utilization
of necroptosis gene sets in conjunction with mul-
tiple machine learning algorithms, CHMP1B, FTHI,
HSP90AB1, IL1A, and RCBK1 were identified as bio-
markers of ET. In addition, the examination of immune
infiltration demonstrated the existence of type 1 and type
17 expression disorders in ET, which exhibited significant
correlations with multiple necroptosis genes. This indi-
cates that necroptosis and immune infiltration have cru-
cial roles in ET. Consequently, our results may potentially
serve as a novel reference for the diagnosis and treatment
of ET in the forthcoming years.

Abbreviations
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